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Nondestructive in-ovo sexing of Hy-Line Sonia eggs by EggFormer using hyperspectral imaging
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• Hyperspectral images of Hy-Line Sonia eggs were
collected on even days from day 0 to 14 for gender
identification.

• Feature bands were selected by RF, PCA, SPA,
CARS and then the recombined images were pro-
cessed by ViT-Base16.

• EggFormer demonstrates superior accuracy of
95.4%, with f1 score of 0.958 amd Kappa of 0.908
on day 10.

• By interpreting EggFormer, images with full bands
were reduced to 22 bands retaining the same results,
less than the 25 bands extracted by CARS.
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Abstract

Early identification of egg gender during incubation is crucial for animal welfare and commercial poultry production,
as nowadays day-old male chicks are often culled due to low economic value. Hyperspectral imaging (HSI) recognition
presents a swift, non-destructive, and cost-effective solution for in-ovo sexing compared to traditional methods such as
Polymerase Chain Reaction (PCR), Volatile Organic Compounds (VOC), and Raman spectroscopy. In this study, we
collected spectral images of Hy-Line Sonia chicken eggs even-numbered day from day 0 to 14, with a focus on day 10 for
detailed analysis. We introduced the EggFormer model, incorporating channel attention and transformer self-attention
mechanisms. To assess model performance, significant wavelengths were extracted by machine learning algorithms, in-
cluding Random Forest(RF), Principal Component Analysis(PCA), Successive Projections Algorithm (SPA), and Com-
petitive Adaptive Reweighted Sampling Algorithm (CARS). The channel images of these significant wavelengths were
then employed with ViT-Base(Vision Transformer) for prediction and comparison. The EggFormer model demonstrated
superior results, with accuracy of 95.4% , recall of 98.6%, f1 score of 0.958 and Kappa of 0.908. Besides, by interpreting
channel attention block, 22 wavelengths were selected maintaining best results and 4 bands with accuracy of 94.6%.
This outperformance positions it as a promisingly efficient and economical solution for industrial applications. The code
of this work is available at https://github.com/quietbamboo/EggFormer for reproducibility.
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1. Introduction1

Worldwide, approximately 7 billion unwanted day-old2

male layer chicks are culled hours after they hatch every3

year(Krautwald-Junghanns et al., 2018), and 330 million4

in the European Union alone(Jia et al., 2023), sparking the5

ethical and animal welfare concerns(He et al., 2019). Since6

January 1, 2022, Germany and France have jointly become7

the first countries to ban the systematic killing of male8

chicks, and more and more countries are responding with9

such bans(Di Concetto et al., 2023). Some believe that10

chicken embryos potentially start to perceive pain after11

day 7 of the total 21-day incubation period before hatch-12

ing(Rosenbruch, 1997), but encephalogram signals are not13

visible until after day 12, indicating that the pain per-14

ception may have occured after that period(Corion et al.,15

2023, Mellor and Diesch, 2007, Corion et al., 2022). In16

general, terminating chicken embryos before day 14 are17

generally believed to reduce the pain perception. Besides18

the animal welfare concerns, gender identification of eggs19

as early as possible during incubation can also substan-20

tially lower the per female layer chick cost and increase21
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the overall hatching production efficiency. Moreover, male 22

eggs identified during incubation can be used for other 23

purposes, for example, male egges at day 10 of incuba- 24

tion may be used for vaccine production, while continuing 25

with hatching not only incurs additional cost in the sub- 26

sequent hatching process, but also results in a much lower 27

economic value per egg, because a day 1 male chick is of- 28

ten immediately killed and used as a cheap protein source, 29

such as in pet food. 30

Raman spectroscopy has been used for in-ovo sexing, 31

achieving a 90% identification accuracy at day 3.5 of incu- 32

bation by analyzing the spectra of blood in the extraem- 33

bryonic vessels by opening a window in the shell(Galli 34

et al., 2016). However, such invasive identification meth- 35

ods are less preferrable than noninvasive ones, due to in- 36

creased contamination risks and possiblly lower hatcha- 37

bility rate. Moverover, the process of opening and seal- 38

ing the eggshells would increase the cost of identification, 39

making it unsuitable for large-scale applications in large 40

hatcheries. 41

Volatile organic compounds(VOC)(Jia et al., 2023) 42

in the gases emitted through eggshells are studied with 43

promising in-ovo sexing results(Corion et al., 2023, Hu 44

et al., 2022), however, collecting gas samples is time con- 45

suming and may potentially hurt the embryos since faster 46
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gas extraction may result in lower oxygen levels inside the47

eggshell. Although recently techniques, such as chemical48

ionization have been proposed for rapid detection of gas49

components, the accuracy and repeatability of the model50

are still poorly understood and uncertain.51

Compared with the above methods, spectral-based52

technology has the advantage of higher accuracy, higher53

throughput, and lower cost(Jia et al., 2023). Therefore,54

spectral-based noninvasive in-ovo sexing methods has be-55

come a trending research topic in poultry breeding. Hy-56

perspectral imaging (HSI) technology can obtain spectral57

and image information at a series of wavelengths. Spec-58

tral information can reflect the composition of substances,59

such as protein, fat, moisture, etc., and image information60

can reflect external quality and surface defects. Due to61

the changes of eggshell and internal components caused by62

physiological metabolism during storage or incubation, hy-63

perspectral images will also demonstrate differences, which64

serve as a strong basis for early embryo gender identifica-65

tion.66

HSI based method is widely believed to be an67

ideal solution for in-ovo sexing(Göhler et al., 2017, Pan68

et al., 2016, Rahman et al., 2022, Corion et al., 2022).69

Typically, it covers three wavelength regions: near-70

ultraviolet(300-380nm), visible(380-780nm) and near-71

infrared(780-1500nm). It has been used to identify the72

unfertilized duck eggs(Dong et al., 2019) and chickena73

eggs(Ghaderi et al., 2024) before hatching, with over 90%74

prediction accuracy with visible/near infrared(VIS/NIR)75

transmittance spectroscopy.76

While measuring full spectrum of wavelength may pro-77

duce high accuracy, the increased measurement time and78

building cost of the full spectrum camera poses challenges.79

Hence it is important to extract feature bands among80

all the measured wavelengths for faster implementation81

and lower building cost with similar accuracy. Machine82

learning(ML) algorithms are proposed to select such fea-83

ture bands, including Random Forest(RF)(Toksoz et al.,84

2021), Principal Component Analysis(PCA)(Corion et al.,85

2022, Galli et al., 2017), Successive Projections Algo-86

rithm(SPA)(Jia et al., 2023) and Competitive Adaptive87

Reweighted Sampling Algorithm(CARS)(Jia et al., 2023)88

Specifically, Deel Learning(DL) algorithms have been used89

in RGB images for gender identification(Horkaew et al.,90

2024, Jia et al., 2023), however few works have been de-91

signed for hyperspectral images.92

Vision Transformer(ViT)(Dosovitskiy et al., 2020)93

based on Transformer(Vaswani et al., 2017), is a pop-94

ular method for computer vision tasks for the usual 3-95

channel RGB images. In this study, we proposed a new96

model EggFormer based on ViT to identify the gender of97

eggs by HSI during hatching. Compared to conventional98

algorithms such as ML algorithms including RF, PCA,99

SPA, CARS, and DL algorithms including ViT-Base/16,100

EggFormer achieves state-of-the-art performance with the101

overall accuracy of 94.6% and precision of 94.8% on day102

10. This work sheds light on solving the problem of in-103

ovo-sexing using the Transformer framework. We believe 104

that our study can greatly boost the development of the 105

new generation of high-throughput automated machines 106

for in-ovo sexing, which can both benefit animal welfare 107

and increase the efficiency for the poultry industry. 108

2. Materials and methods 109

2.1. Data collection and prerocessing 110

2.1.1. Materials and devices 111

Materials: The experimental materials were processed 112

and collected in Nanjing Agricultural University, Jiangsu, 113

China. Hy-Line Sonia eggs (white shell) were purchased 114

from Jiushan Agriculture and Animal Husbandry Crop, 115

Hubei, China. 116

Devices: The microcomputer automatic incubator 117

(WSGD-6, Wansheng Incubation Equipment Crop, Nan- 118

jing, China); The Vision-near-infrared hyperspectral imag- 119

ing system (Isuzu Optics Corp, Taiwan, China). 120

2.1.2. Sample preprocessing 121

A total of 180 Hy-Line Sonia eggs were utilized in all ex- 122

periments, selecetd by similar color and size(60±5 g) with 123

no cracks. The eggs were then cleaned, sterilized with 75% 124

alcohol, kept dry, and automatically turned every 2 hours 125

inside incubator with environment maintaing at 37.8 ◦C 126

and 60% relative humidity. Hyperspectral images of the 127

pointed end of the eggs were collected even days from day 128

0 to 14. During this period, the eggs were immediately 129

returned to the incubator after images collection to avoid 130

any impact on the survival rate. On the 18th day of incu- 131

bation, the eggs were transferred to a chamber until the 132

chicks emerged from the shells on day 21 for furture gender 133

identification. 134

2.1.3. Day-old chick gender identification 135

For Hy-Line Sonia, the gender of day-old chicks can 136

be determined based on the length of feathers. For ex- 137

ample, the covert feathers of female chicks are shorter 138

than the primary feathers. In contrast, male chicks ex- 139

hibit longer covert feathers compared to primaries, or in 140

the same length. Finally, 70 male samples and 61 female 141

samples were identified among the 131 hatched samples by 142

the feathers sexing identification method. 143

2.1.4. HSI collection and correction 144

The hyperspectral transmission images of eggs were 145

collected by line scanning method. The dull end of the 146

egg was placed facing up, the light source was located di- 147

rectly below and the spectral camera was located above 30 148

cm, so the light transmit the egg and finally collected by 149

camera. The physical picture of the hyperspectral acqui- 150

sition system is shown in Figure 1. 151

The hyperspectral imaging system was firstly pre- 152

heated for 30 minutes, and then after image collection last- 153

ing about 30 s, each egg was immediately put back into the 154
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incubator to keep intact. Meanwhile, to ensure the qual-155

ity of the acquired hyperspectral images, it is necessary to156

optimize the exposure time, platform moving speed, light157

intensity and other parameters before the test. The main158

parameters finnally used of the imaging system are shown159

in Table 1. Due to the unstable intensity distribution of160

the light source of CCD camera, the hyperspctral image161

correction was carried out with black and white correction162

method(Cao et al., 2022).163

Table 1: Main parameter settings of the imaging system

Parameters Value (unit)

Image Resolution 440*804(pixel)
Acquisition Speed 1.5 (mm/s)
Spectral Resolutio 2.8 (nm)
Light Source Color Yellow

Light Source Intensity 90 (W)
Color Temperature Range 1500 - 3500(K)

Exposure Time 72 (ms)
Wavelength Scope 382.67 - 1010.65(nm)

Figure 1: Physical diagram of hyperspectral acquisition system.
1⃝Industrial camera; 2⃝Imaging spectrometer; 3⃝Lens; 4⃝Moving
platform; 5⃝Halogen light source; 6⃝Egg sample.

2.2. Region of interest slicing164

The wavelength scope of collected spectral images165

ranges from 382.67nm to 1010.65nm, and the resolution166

after correction is 440(bands) * 804 pixels(width) * 377167

pixels(height). However, not whole image contains egg,168

so it is necessary to slice the region of interest(ROI) from169

background. Specifically, the extracting flow of ROI was170

described in Figure 2, and it shows that the original im-171

age contains lots of noise information around the egg.172

Firstly, RGB image was merged by bands 638.82nm(R),173

548.83nm(G) and 459.64nm(B), then greyscale image was174

processed by OpenCV library. The scope of ROI can be 175

obtained directly by HoughCircle detection method, thus 176

ROI spectral images can be sliced. The ROI radius was 177

expanded by 5 pixels since the embryos were observed on 178

the edge and the egg tends not to be a standard circle. 179

Although little background noise was introduced, the po- 180

tential information of egg border was more important. 181

Figure 2: Extracting flow of region of interest(ROI).

2.3. Significant wavelengths selecting 182

2.3.1. Dimensional reduction methods 183

For the original spectral images contains 440 wave- 184

lengths, which caused the difficulty of training models as 185

input, so the dimensional reduction is important. Random 186

Forest(RF)(Cao et al., 2022, Belgiu and Drăguţ, 2016) and 187

Principal Component Analysis(PCA)(Shahin and Symons, 188

2011) are typical methods to preselect the most relevant 189

and significant wavelengths from hyperspectral images. 190

Detailly, Random Forest is an ensemble classifier consist- 191

ing of multiple decision trees, each of which is an estimator, 192

then the result is computed by voting. Hence, RF analyses 193

the importance of input variables, and then selecting the 194

significant wavelengths (Strobl et al., 2008). 195

PCA is also a well-know method for feature extraction 196

(Cao et al., 2003, Hasan and Abdulazeez, 2021), which 197

transforms high-dimensional inputs into low-dimensional 198

outputs. In fact, the principal components computed by 199

PCA is consisted by input features, and thus the con- 200

tribution value of input features (eigenvectors) can be 201

referenced to select significant wavelength (Shahin and 202

Symons, 2011). 203

Besides, Successive projections algorithm(SPA) is an 204

algorithm which calculates correlation by projecting the 205

vector representing the wavelength onto other wavelengths 206

and comparing the projection magnitudes(Soares et al., 207
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2013, Sun et al., 2019). It selects wavelength variable com-208

binations with minimal redundant information and mini-209

mal collinearity.210

Competitive adaptive reweighted sampling algorithm211

(CARS) is another widely used method to remove re-212

dundant information from HSI(Li et al., 2009, Liu et al.,213

2020). CARS is base on adaptive reweighted sampling214

(ARS) technique, which utilizes Partial Least Squares215

(PLS) modeling to compare regression coefficient magni-216

tudes for wavelength selection. Through iterative cycles,217

the algorithm identifies the wavelength combination with218

the minimum RMSECV score, achieving optimal selection.219

2.3.2. Average representative spectrums220

Traditionally, for each hyperspectral image, a repre-221

sentative spectrum can be computed by the average of all222

pixels in each channel image, so each egg sample can be223

described as a 440-dimensional vector. The representa-224

tive average spectrums of all eggs classified by female and225

male were shown in Figure 3. The relationship between226

wavelength and transmission value on day 0, 2, 4, 6 and227

day 8, 10, 12, 14 were descirbed in Figure (a) and (b), re-228

spectively. All curves contains two peaks around 700 nm229

and 800 nm, and the wavelengths at the peaks increase as230

time goes on. Specially, the peak value of female curve231

is higher than male curve on the same day. This phe-232

nomenon illuminates the female eggs are generally weaker233

in absorption than male eggs, so the value of transimitted234

light is higher, and the changes during incubation can be235

captured by hyperspectral imges.236

2.3.3. Spectrums preprocessing methods237

In order to eliminate the noise in the spectral images,238

following methods were used to smooth the spectrums239

or extract the features of spectrums, such as: savitzjy240

golay(SG)(Ai et al., 2022), multiplicative scatter correc-241

tion(MSC) (Ma et al., 2016), standard normalized vari-242

ate(SNV)(Guo et al., 1999), 1st and 2nd derivatives (Fe-243

menias et al., 2021). The smoothed results on day 10 were244

showed as example in Figure 4. However, little difference245

was found between the results of original and SG(window246

length=5, polyorder=3) smoothed spectrums, which in-247

dicating that great noise have been reduced after black-248

and-white correction and enough information contained in249

original spectrums, rendering it ideal for subsequent anal-250

ysis.251

2.4. Egg-SpectorFormer for in-ovo sexing252

The conventional average spectrum method may in-253

evitably lose some hidden information because the image254

of each channel is calculated as just a mean value. It255

is a great challenge for both machine learning(ML) al-256

gorithms and deep learning(DL) algorithms to use full257

bands of iamges as input for huge parameters and cal-258

culations. Thus, We proposed the EggFormer base on Vit,259

with Squeeze and Extract(SE) Layer and Depthwise Sepa- 260

rable Convolution(DWConv), making it be capable of ex- 261

tracting more potential information from full bands input, 262

and the model structure was shown in Figure 5. 263

2.4.1. SE Layer 264

The SE layer(Hu et al., 2018) is a channel attention 265

mechanism, which assigns larger weights to important 266

channels and then linearly combines these channels based 267

on the weights. Specifically, by using AvgPool2d, each 268

channel of the spectral image is downsampled to a mean 269

value, to considering more informations, the d1 and d2 270

value were also calculated in this work. Then the 3 440- 271

dimensional vectors passed through two fully connected 272

layers (Linear) to obtain weights for each channel. Af- 273

ter that, the values were added by position and resized 274

between 0 and 1 by sigmoid, and finally, the weights are 275

multiplied with the corresponding channels images, result- 276

ing in the incorporation of channel importance features in 277

the output data. During the training process, the param- 278

eters of 2 Linears are updated along with other model pa- 279

rameters until the correct channel importance weights are 280

extracted. 281

2.4.2. Depthwise Separable Convolution 282

After SE layer, the output data keeps the same dimen- 283

sion with input, which contains some redundant informa- 284

tion in some unimportant channels. To reduce the image 285

channels, DWConv(Fran et al., 2017) is employed. It com- 286

bines depthwise(DW) and pointwise(PW) components to 287

extract features, resulting in lower parameter count and 288

computational cost compared to conventional convolution. 289

In the DWConv block, the image is firstly passed through 290

pointwise convolution to change the channel dimension 291

to 32. Subsequently, it undergoes depthwise convolution 292

with 32 groups to extract features within each channel. 293

Finally, pointwise convolution is applied again to fuse in- 294

formation between channels, resulting in an output image 295

with 32 channels. 296

2.4.3. Vision Transformer Base/16 297

The backbone applied is Vision Transformer Base- 298

16(ViT-16), which size of kernel stride is 16(Conv2d-16) 299

in Patch Embedding Block. Generally, ViT-16 mainly 300

consists of Patch Embedding, Position and Class Embed- 301

ding, Encoder Layers, and MLP head. Firstly, the Patch 302

Embedding layer divides the input image into patches of 303

size 14*14 using Conv2d-16. The channel dimension is ex- 304

panded from 32 to 768 through the convolution, resulting 305

in an output image with dimensions of 768*14*14. Sub- 306

sequently, with width and height dimensions flatten, it 307

becomes 768*196(196 patches, each with a dimension of 308

768). Then a class token is added before the patches, and 309

overall position embedding is added to incorporate posi- 310

tional information. The data is then fed into the Encoder 311

Layers, consisting of 12 layers of Encoders, to extract rele- 312

vant information. Finally, the class token for all patches is 313
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(a) Spectrums on d 0, 2, 4, 6 (b) Spectrums on d 8, 10, 12, 14

Figure 3: Average spectrum curve of male and female class. Channel image at each wavelength was represented as avergae value of all pixels.

(a) Original spectrums (b) SG smoothed spectrums (c) MSC smoothed spectrums

(d) SNV smoothed spectrums (e) D1 smoothed spectrums (f) D2 smoothed spectrums

Figure 4: The average spectrums of ROI smoothed by SG, MSC, SNV, D1, and D2 on d 10.

extracted, and after one Linear and Softmax in the MLP314

head, it is directly projected to the gender classes with315

probabilities, thus the in-ovo sexing by EggFormer is re-316

lized.317

Due to the lack of inductive bias, a form of prior knowl-318

edge, in the transformer attention mechanism compared319

to CNN in ViT, the performance may be slightly inferior320

when the dataset is not large enough(Dosovitskiy et al., 321

2020). Therefore, we employed a transfer learning ap- 322

proach where the model weights, originally trained on the 323

imageNet-21k dataset in the Encoder layers, were par- 324

tially frozen. Throughout the model training process, sev- 325

eral techniques were employed to achieve improved perfor- 326

mance, including DropPath(Larsson et al., 2016), Cosine 327
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Figure 5: The structure of EggFormer(left) and the details in functional blocks(right).

Learning Rate Decay(He et al., 2019), and Kornia image328

augumentation(E. Riba and Bradski, 2018, 2020a,b).329

2.5. Performance Evaluation Scores330

To comprehensively evaluate the model built, indica-331

tors containing overall accuracy(OA), f1 score, Kappa co-332

efficient were used. The calculating formulas were shown333

as follows. In the equations, TP(True Positive) is the334

number of samples that are correctly predicted to be pos-335

itive cases, and TN(True Negative), FP(False Positive),336

FN(False Negative) can be referred by parity of reasoning.337

In models evaluation, OA means the proportion of samples338

that the model prediction results agree with the actual la-339

bel, while AA stands for the average accuracy, which is340

the average proportion of correctly predicted cases for each341

class.342

OA =
TP + TN

TP + FN + FP + TN
(1)

AA =
1

2
∗ TP

TP + FN
∗ TN

TN + FP
(2)

The Kappa coefficient takes into account the difference343

between the expected accuracy and the actual accuracy344

and is used to measure the consistency of the model clas-345

sification, which is can be calculated by Equation(3-4).346

Kappa =
OA− PE

1− PE
(3)

PE =
(TN + FN) ∗ (TN + FP ) + (TP + FN) ∗ (TP + FP )

(TN + TP + FN + FP )2
(4)

The F1 score is the harmonic average of Precision and 347

Recall, where can be calculated as Equation(5-7). 348

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(5)

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

3. Results and Discussion 349

The proposed model was mostly implemented in 350

Python, except for the CARS code, which is adopted from 351

the original author and implemented in Matlab(Li et al., 352

2009). The work was implemented based on Pytorch and 353

Scikit-learn open-source framework. The training and test 354

platform hardware includes the Nvidia A800 GPU and 355

AMD EPYC 7742 64-core processor, with 200G mem- 356

ory. The experiments were conducted using Leave-One- 357

Out Cross-Validation (LOOCV), where the datasets were 358

evenly divided into three parts. Two of these parts were al- 359

located for training data(87 eggs), while the remaining one 360

served as the test set(44 eggs), and the ratio of male and 361

female in each part were kept as euqal as possible. Given 362
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the higher value of female chicks over male ones in prac-363

tical poultry production, the model task was configured364

as binary classification, designating male eggs as positive365

samples and female eggs as negative ones. This approach366

aims to enhance the accuracy of male chick prediction, fa-367

cilitating early screening. Subsequently, three models were368

obtained by 3 CVs, and the final scores were averaged as a369

comprehensive assessment of the method, and finnaly the370

optimal model was applied for interpretation and feature371

wavelength selection.372

3.1. Significant Wavelengths Extracted by RF, SPA, PCA,373

and CARS374

The average spectrum on even days from 0 to 14 were375

preprocessed by 5 smooth methods(including SG, MSC,376

SNV, D1, and D2) with RF. The result showed that all 5377

methods achieved their maximum accuracy on day 10(Fig-378

ure A.1). The accuracy of the original spectrums, as well379

as the D1 and D2, exceeds 0.9 on day 10, specifically reach-380

ing 0.939, 0.923, and 0.931, respectively. The ORI spec-381

trum demonstrates superior performance in both accuracy,382

precision, f1, and Kappa scores.383

Consequently, based on the best results obtained, we384

applied the original average spectrum on day 10 in the385

following significant wavelengths extract. The 4 dimen-386

sionality reduction methods (RF, PCA, SPA, CARS) all387

employed PLS-DA for classifying. As shown in Table 3,388

RF achieved the highest accuracy of 93.9%, while CARS389

performed the poorest with 80.8%. By interpretation of390

the 4 models, the top-10 most relevant wavelengths were391

selected and listed in Table 2. In terms of RF, it reduced392

the input 440 wavelengths to 219 (n_components=0.98),393

which accounts for 98% importance of all features. Among394

them, there were 9 wavelengths with contributions exceed-395

ing 2.5%, and contribution at 712.76nm was the highest396

with 4.42%. Specifically, the top-10 wavelengths were dis-397

tributed from 698nm to 765nm, and the bands with con-398

tributions exceeding 0.05% were distributed in the range399

of 600-900nm, covering the visible and NIR regions(Figure400

A.2a). Besides, we also used the Shapley Additive exPla-401

nations(SHAP) method(Shapley et al., 1953) to explain402

the best RF model in Figure A.2b. The each point repre-403

sents one egg sample, and the higher of feature in Y-axis,404

more relevant is the wavelength. Specificlly, 712.76nm405

is the most relevant wavelength, and is positive related406

with male eggs when average value at this wavelength is407

high(red), and negative when value is low(blue). In gen-408

eral, the top-10 relevant wavelengths provided by SHAP409

fall within the range of 695-765nm.410

Concerning PCA, the top-3 principal components411

(PCs) collectively accounted for over 99% of the wave-412

lengths, with individual contributions of 95.57%, 3.04%,413

and 1.07%, respectively. By multiplying the values of the414

corresponding channels with the absolute values of the415

wavelength’s eigenvalues, principal component maps for416

PC1, PC2, and PC3 were generated (Figure A.3). PC1417

depicted the spectral image of the egg, and notably in Fig- 418

ure A.3a, an enlarged 5-pixel radius was applied during the 419

ROI cropping to retain additional information, resulting in 420

only a small ring of noise surrounding the egg. PC2 high- 421

lighted more pronounced noise, while the granular noise 422

in PC3 was blended with the egg region, predominantly 423

stemming from the camera scanning process. The Top-10 424

wavelengths for PC1 were distributed within the range of 425

702nm-714nm, with minimal differences in Eigenvectors. 426

The SPA algorithm identified 11 candidate wavelengths 427

and finalized 10 as the selected wavelengths, while CARS 428

featured 25 significant wavelengths. The wavelength 429

ranges chosen by both 2 algorithms exhibited similarities, 430

predominantly falling within 400-600nm, with a few ex- 431

tending to 800-1000nm. These wavelengths were marked 432

as scattered points on the average spectrum in Figure A.4a 433

and A.4c. Additionally, the changing log of scores during 434

the model calculation iterations were recorded separately 435

in Figure A.4b and A.4d. 436

3.2. Performance of Models 437

3.2.1. Significant wavelengths performance 438

Due to the limited number of the training dataset, 439

the Kornia library(Riba et al., 2020) was employed for 440

data augmentation during model training. This in- 441

cluded RandomHorizontalFlip, RandomRotation(±180°), 442

and RandomErasing(scale:0.02-0.05, ratio:0.3-3.3), all ran- 443

dom probabilities were set to 0.8. The experimental results 444

are presented in Table3, and to validate the effectiveness of 445

reduction algorithms, channel images of full wavelengths 446

and recoupled with selected wavelengths were chosen as 447

inputs. When employing the ViT-Base model, the over- 448

all accuracy using all bands was the lowest with 0.924, 449

indicating shortcomings in the ViT model when handling 450

of high-dimensional data. Despite SPA retaining fewer 451

bands(10) compared to CARS(25) after bands selection, 452

its accuracy was worse, suggesting potential loss of essen- 453

tial information during dimensionality reduction. Notably, 454

CARS exhibited advantages in both feature wavelength 455

selection and accuracy, achieving the highest accuracy of 456

0.939. Besides, PCA-PC1 selected 267 wavelengths, ac- 457

counting for 98% of the variance in PC1, with compara- 458

ble performance to RF. These observations were consistent 459

when utilizing models of ViT-Img21K and EggFormer. 460

3.2.2. Comparison of models 461

In order to evaluate the performance of models, 462

3 models were compared: the ViT-Base model, ViT- 463

Base-Img21K with pre-trained weights, and proposed 464

EggFormer. Considering the differences in models, SGD 465

and AdamW optimizer were both used to get the best 466

results, with the batch size of 64, epochs of 120, leran- 467

ing rate of 5e-4, and the finnal results were shown in Ta- 468

ble3. Initially, without pre-trained weights, the accuracy 469

of ViT only matched with RF, but significantly improved 470

when pre-trained weights were applied, reaching an accu- 471

racy of 0.939 with full-band input. However, this came 472
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Table 2: The top-10 significant wavelengths by RF, PCA, SPA, and CARS.

Rank
RF PCA-PC1 SPA CARS

nm Contribution(%) nm Eigenvectors nm Relevance nm Coefficients

1 712.76 4.42 706.94 0.095 810.73 0.36 402.67 1.88

2 714.22 4.10 708.39 0.095 515.08 0.29 413.41 1.71

3 765.33 3.96 705.48 0.095 522.09 0.21 448.68 1.38

4 722.97 3.68 709.85 0.095 406.69 0.12 481.69 1.35

5 763.87 3.22 704.03 0.094 432.34 0.10 522.09 1.33

6 720.05 2.76 711.31 0.094 571.51 0.07 439.13 1.28

7 717.13 2.66 702.57 0.094 408.03 0.07 424.21 1.28

8 702.57 2.52 712.76 0.094 994.74 0.06 429.62 1.26

9 718.59 2.51 701.12 0.094 495.56 0.02 408.03 1.25

10 698.21 2.37 714.22 0.093 936.61 0.01 390.65 1.22

Table 3: The scores of models. The number in brackets are number of significant wavelengths extracted by the corresponding method.

Model Input bands Accuracy Precision Recall F1 score Kappa Train Params Total Params

RF All(440) 0.939 0.931 0.957 0.943 0.877 \ \

PCA-PLSDA All(440) 0.901 0.870 0.957 0.911 0.799 \ \

SPA-PLSDA All(440) 0.839 0.795 0.943 0.863 0.673 \ \

CARS-PLSDA All(440) 0.808 0.771 0.914 0.837 0.609 \ \

ViT-Base

All(440) 0.924 0.943 0.913 0.926 0.847 171.57M 171.57M

RF(219) 0.931 0.943 0.928 0.935 0.862 128.12M 128.12M

PCA-PC1(267) 0.931 0.947 0.928 0.934 0.862 137.55M 137.55M

SPA(10) 0.924 0.958 0.899 0.925 0.044 87.02M 87.02M
CARS(25) 0.939 0.908 0.986 0.945 0.876 89.97M 89.97M

ViT-Base-Img21K

All(440) 0.939 0.948 0.942 0.941 0.877 86.51M 171.57M

RF(219) 0.939 0.932 0.957 0.942 0.877 43.06M 128.12M

PCA-PC1(267) 0.939 0.932 0.957 0.942 0.877 128.12M 137.55M

SPA(10) 0.931 0.931 0.928 0.934 0.862 1.97M 87.02M
CARS(25) 0.946 0.933 0.971 0.951 0.892 4.92M 89.97M

EggFormer

All(440) 0.954 0.933 0.986 0.958 0.908 6.60M 91.66M

RF(219) 0.946 0.933 0.971 0.951 0.892 6.37M 91.43M

PCA-PC1(267) 0.946 0.933 0.971 0.951 0.892 6.41M 91.47M

SPA(10) 0.916 0.957 0.885 0.918 0.832 6.30M 91.35M

CARS(25) 0.954 0.933 0.986 0.958 0.908 6.30M 91.35M

with a notable increase in number of parameters. Fea-473

turing SE channel attention and DWConv, EggFormer474

achieved the best accuracy of 0.954 with full-band input,475

surpassing all models in both f1 and Kappa scores, which476

representing comprehensive evaluation results. Further-477

more, EggFormer demonstrated a parameter advantage478

over ViT models, with approximately 6.5M training pa-479

rameters and 91.5M total parameters. Interestingly, af-480

ter spectral dimensions reduced by RF, PCA, and CARS481

methods, EggFormer also outperformed other models, in-482

dicating its ability to extract latent information from spec-483

tral images. However, the performance of EggFormer after 484

SPA was lower than ViT-Base-21K, possibly due to the ini- 485

tial reduction in bands by 3/4 with SE channel attention, 486

which limits accuracy. 487

3.2.3. Interpretation of EggFormer 488

The training and validation log curves of 3 cross val- 489

idations were shown in FigureA.5. With the increas- 490

ing number of epochs, the training and testing loss de- 491

creased to approximately 0.25, with a high confidence 492

probability. To further clear the internal working mecha- 493
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nisms of EggFormer, we conducted visualizations by Grad-494

CAM(Selvaraju et al., 2017), based on gradients. As de-495

picted, heatmap visualization allows us to comprehend the496

focused areas by model, with increasing red color inten-497

sity indicating higher attention levels. When using the498

last layer’s norm1 block of the Encoder Layers as anaylsis499

target, as exemplified by the both 2 female and male eggs,500

EggFormer’s attention is primarily directed towards the501

interior or edges of the eggs. Notably, when the egg is clas-502

sified as female, EggFormer tends to emphasize brighter503

regions of the egg. Conversely, for male classification, at-504

tention shifts towards the edges or darker regions within505

the egg. This observation is also supported by the aver-506

age spectrums of the eggs in Figure3, wherein the peak507

value of male eggs spectrums are indeed lower than those508

of female ones.509

To dissect the SE channel mechanism of EggFormer,510

the output layer of SE is extracted and normalized, as il-511

lustrated in the Figure7. The wavelength contributions512

shown in the figure are distributed across the entire spec-513

trum. To reduce the number of effective wavelengths, a514

sampling interval is set, with unique values taken between515

intervals based on decreasing contribution values. Experi-516

mental results were depicted in the figure when the learn-517

ing rate is set to 6e-4 and the number of channels is less518

than or equal to 10, with a subsampling ratio of 1 for519

SE channels. When intervals are set as factors of 440(like520

1, 2, 4, 5, 10, 20, 22), a 4-wavelengths input comprising521

945.354nm, 762.407nm, 409.377nm, and 644.587nm main-522

tains an accuracy of 0.946. Simultaneously, even with a 22-523

wavelengths input(less than CARS), EggFormer sustains524

an accuracy of 0.954, with corresponding wavelengths in-525

dicated in the figure caption and marked on the figure.526

The reduction of bands contributes to enhancing recogni-527

tion efficiency, lowering costs, and consequently increasing528

economic returns in industrial applications.529

(a) Female 6 (b) Female 14

(c) Male 72 (d) Male 174

Figure 6: RGB and Heapmap by Grad-CAM of eggs on d 10.

Figure 7: Contributions of wavelengths by EggFormer. The se-
lected 4 bands are 945.354, 762.407, 409.377, and 644.587. The
slected 22 bands are as follows: 945.354, 762.407, 409.377, 644.587,
888.39, 399.991, 618.669, 578.621, 728.801, 954.091, 562.989, 470.638,
1004.87, 904.482, 520.684, 779.97, 718.592, 441.857, 840.049, 494.166,
670.619, and 829.789.

3.2.4. EggFormer on d 0-14 530

The results of EggFormer using full-bands input on 531

even-number days were shown in Figure8. The accuracy 532

peaks on the 10th day, with a trend similar to the RF 533

prediction results shown in the previous figure: accuracy 534

gradually increases from day 0 to 10 before declining. This 535

phenomenon occurs because during the early stages of egg 536

development, when embryos are just beginning to form, 537

the differences between male and female embryos are pri- 538

marily at the genetic level. Organs such as the gonads, 539

which are associated with gender, have not yet developed. 540

Around d 6.5, gonadal differentiation begins(Hirst et al., 541

2018). Subsequently, as the embryo develops feathers and 542

organs, interference signals increase, reducing egg trans- 543

parency. The hormones of both sexes can be measured in 544

the allantoic fluid on day 7 to 14(Kaleta and Redmann, 545

2008, Gill et al., 1983, Phelps et al., 2003). During the de- 546

velopment process, the content of hemoglobin in the blood 547

varies according to gender(Galli et al., 2016), with band 548

around 785nm, consistent with 762.407nm and 779.97 nm 549

in the selected bands. 550

4. Conclusions 551

In our study, EggFormer was developed and realized 552

for in-ovo sexing of Hy-Line Sonia eggs with hyperspec- 553

tral imaging, which utilizes ViT-Base as backbone. Hy- 554

perspectral images were collected on even days form 0 to 555

14, and compared with conventional methods for selecting 556

significant wavelengths. EggFormer possessed the capac- 557

ity of handling the full-bands images input, and chieved 558

the highest accuracy of 0.954, an f1 score of 0.958, and a 559

Kappa of 0.908 on day 10. Besides, the working mecha- 560

9



Figure 8: Figure results of EggFormer on even days 0-14

nism of EggFormer was interpreted and subsequently re-561

duced the full set of 440 bands to 22 bands while main-562

taining the same accuracy of 0.954, and to 4 bands with an563

accuracy of 0.946. EggFormer demonstrates the capability564

to extract latent information from spectral images, offer-565

ing promise for early-stage embryo sex identification using566

fewer wavelengths, with potential applications in hatch in-567

dustry. However, the limited size of our dataset constrains568

the maximum recognition accuracy of deep learning mod-569

els. We anticipate that gathering more spectral images in570

future applications will enable more precise identification.571
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Appendices 770

(a) Accuracy score (b) Precision score

(c) F1 score (d) Kappa score

Figure A.1: Scores comparing with 6 prepossing methods of average spectrum on d 0-14.
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(a) Feature importances by best RF model (b) Feature importances by SHAP on best RF model

Figure A.2: Contributions of all wavelengths by RF on d 10

(a) PC1 of Male-1 (b) PC2 of Male-1 (c) PC3 of Male-1

(d) PC1 of Female-3 (e) PC2 of Female-3 (f) PC3 of Female-3

Figure A.3: Figure of PCs of male and female egg by PCA on d 10
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(a) Wavelengths selected by SPA (b) RMSE of SPA

(c) Wavelengths selected by CARS (d) Scores curve during CARS. Plots top and center show the changing of
the number of sampled wavelengths and 5-fold RMSECV values. Plot bot-
tom records the regression coefficient path of each wavelength. The vertical
asterisk line denotes the optimal point where 5-fold CV values achieve the
lowest.

Figure A.4: Figure of slection of significant wavlengths by SPA and CARS on d 10.
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(a) Accuracy curve of cross validation 0 (b) Loss curve of cross validation 0

(c) Accuracy curve of cross validation 1 (d) Loss curve of cross validation 1

(e) Accuracy curve of cross validation 2 (f) Loss curve of cross validation 2

Figure A.5: Figure of accuracy and loss curve in 3 cross validations on d 10.
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