

Screen-Off Traffic Characterization and Optimization in 3G/4G Networks

Junxian Huang¹ Feng Qian² Z. Morley Mao¹ Subhabrata Sen² Oliver Spatscheck²

¹University of Michigan ²AT&T Labs - Research

Screen-off traffic characterization: an interesting yet unexplored topic

- Smartphone screen is switched on and off often (>50 times/day/user)
- Screen status is a good heuristic for determining whether the user is actively interacting with the device
- Battery is scarce resource for smartphones

Screen-off traffic characterization: an interesting yet unexplored topic

- Smartphone screen is switched on and off often (>50 times/day/user)
- Screen status is a good heuristic for determining whether the user is actively interacting with the device
- Battery is scarce resource for smartphones

Data set studied

- Collected from 20 volunteers in 5 months
 - May 2011 ~ Oct 2011, Android 2.2 smartphones
- Full packet payload and process association is collected
 - 131.49 millions packets
 - 80.03GB payload
- Screen on/off status with sampling rate of 1Hz

Breakdown of packet count based on screen status

Unknown group: 9% of all packets, due to users accidentally terminating screen status logger

Breakdown of packet count based on screen status

- 36% screen-off packets
- Could be more given the unknown category
- Which applications generate them?
- What is their energy and signaling impact?

Packet count

Unknown group: 9.02% of all packets, due to users accidentally terminating screen status logger

Radio Resource Control (RRC) state machine

How does traffic pattern affect energy and radio resource?

Scattered traffic consumes more energy and radio resource than Gathered traffic

Definition of a "burst"

- A burst is a sequence of packets with interpacket time ≤ BT, and leading/trailing gap > BT
- BT is burst threshold selected empirically based on network RTTs, e.g. BT = 2s

Screen-on and screen-off traffic comparison

 Screen-off traffic has less packets/payload, but more bursts which are smaller and shorter

Does screen-off traffic matter for radio resource and energy?

 Yes! Actually, screen-off traffic has higher impact than screen-on, though with less packets

Top screen-off applications based on packet count

Application category	screen-off packets / total packets
Homescreen widget	3.80%
Multimedia streaming	3.30%
Utility	2.69%
Multimedia streaming	2.66%
Multimedia streaming	2.37%
Utility	2.07%
Social network	1.95%
News	1.94%
Email	1.33%

Energy impact of top screen-off applications

Scattered group has more bursts than
Gathered group, incurring higher energy impact

Energy impact of top screen-off applications

Scattered group has more bursts than
Gathered group, incurring higher energy impact

Energy impact of top screen-off applications

Scattered group has more bursts than
Gathered group, incurring higher energy impact

Screen-aware traffic optimization

- Apply more aggressive settings to screen-off traffic
 - Reason 1: high energy and signaling impact
 - Reason 2: traffic pattern is more "scattered"
 - Reason 3: less user interaction and more tolerance in delay

Case study: screen-aware fast dormancy

 Fast dormancy reduces the tail length by actively notifying the network for early demotion

Case study: screen-aware fast dormancy

- Fast dormancy reduces the tail length by actively notifying the network for early
 - Screen-aware fast dormancy: a shorter tail timer for screen-off traffic
 - For the same signaling overhead, screenaware fast dormancy increases energy saving by 15% compared with basic fast dormancy

Pov

Summary

- Screen-off traffic incurs more energy overhead, with fewer packets and less payload than screen-on traffic
- Screen-aware optimization improves the resource efficiency and is simple to implement
- Other screen-aware traffic optimization techniques studied in the paper, e.g., batching

Thank you!

Q & A

Contact: Junxian Huang (hjx@umich.edu)