MobiSys2012 # A Close Examination of Performance and Power Characteristics of 4G LTE Networks Junxian Huang¹ Feng Qian¹ Alexandre Gerber² Z. Morley Mao¹ Subhabrata Sen² Oliver Spatscheck² ¹University of Michigan ²AT&T Labs - Research ## LTE is new, requires exploration - 4G LTE (Long Term Evolution) is future trend - Initiated by 3GPP in 2004 - 100Mbps DL, 50Mbps UL, <5ms latency - Entered commercial markets in 2009 - Lessons from 3G UMTS networks - Radio Resource Control (RRC) state machine is important - App traffic patterns trigger state transitions, different states determine UE power usage and user experience - State transitions incur energy, delay, signaling overhead ### LTE state machine ### LTE power model Network performance **Energy efficiency** Parameter configuration Mobile application RRC_CONNECTED ### RRC_CONNECTED - Radio resource allocated - Power state is a function of data rate: - 1060mW is the base power consumption - Up to 3300mW transmitting at full speed # Tradeoffs of *Ttail* settings | Ttail setting | Energy
Consumption | # of state
transitions | Responsiveness | |---------------|-----------------------|---------------------------|----------------| | Long | High | Small | Fast | | Short | Low | Large | Slow | RRC_CONNECTED Timer expiration RRC_IDLE # Discontinuous Reception (DRX): micro-sleeps for energy saving - In LTE 4G, DRX makes UE micro-sleep periodically in the RRC_CONNECTED state - Short DRX - Long DRX - DRX incurs tradeoffs between energy usage and latency - Short DRX sleep less and respond faster - Long DRX sleep more and respond slower - In contrast, in UMTS 3G, UE is always listening to the downlink control channel in the data transmission states ### **DRX** in LTE - A DRX cycle consists of - On Duration' UE monitors the downlink control channel (PDCCH) - 'Off Duration' skip reception of downlink channel - T_i: Continuous reception inactivity timer - When to start Short DRX - T_{is}: Short DRX inactivity timer - When to start Long DRX #### LTE state machine ### LTE power model Network performance **Energy efficiency** Parameter configuration Mobile application ### Power trace of RRC state transitions The data points are sampled and DRX in RRC_CONNECTED tail is not obvious due to the low sampling rate | | Power* | Duration | Periodicity | |-------------------------|----------------|------------------------------|---| | | (mW) | (ms) | (ms) | | Screen off (base) | 11.4±0.4 | N/A | N/A | | Screen 100% on | 847.2±2.7 | N/A | N/A | | LTE promotion | 1210.7±85.6 | T_{pro} : 260.1 \pm 15.8 | N/A | | LTE Short DRX On | 1680.2±15.7 | T_{on} : | T_{ps} : | | in RRC_CONNECTED | | 1.0 ± 0.1 | 20.0 ± 0.1 | | LTE Long DRX On | 1680.1±14.3 | T_{on} : | T_{pl} : | | in RRC_CONNECTED | | 1.0 ± 0.1 | 40.1 ± 0.1 | | LTE Off Duration | 1060.0 ± 3.3 | T_{tail} : | N/A | | in RRC_CONNECTED | 1000.0±3.3 | 11576.0 ± 26.1 | 1 | | LTE DRX On | 594.3±8.7 | T_{oni} : | T_{pi} : | | in RRC_IDLE | | 43.2±1.5 | 1280.2 ± 7.1 | | | Power* | Duration | Periodicity | |-------------------------|-------------------|------------------------------|------------------| | | (mW) | (ms) | (ms) | | Screen off (base) | 11.4+0.4 | N/A | N/A | | Screen 100% on | 847.2±2.7 | N/A | N/A | | LTE promotion | 1210.7±85.6 | T_{pro} : 260.1 \pm 15.8 | N/A | | LTE Short DRX On | 1680.2±15.7 | T_{on} : | T_{ps} : | | in RRC_CONNECTED | | 1.0 ± 0.1 | 20.0 ± 0.1 | | LTE Long DRX On | 1680.1 ± 14.3 | T_{on} : | T_{pl} : | | in RRC_CONNECTED | 1000.1±14.5 | 1.0 ± 0.1 | 40.1 ± 0.1 | | LTE Off Duration | 1060.0 ± 3.3 | T_{tail} : | NI/A | | in RRC_CONNECTED | 1000.0±3.3 | 11576.0 ± 26.1 | N/A | | LTE DRX On | 504 2 1 2 7 | T_{oni} : | T_{pi} : | | in RRC_IDLE | 594.3 ± 8.7 | 43.2±1.5 | 1280.2 ± 7.1 | | | Power* | Duration | Periodicity | |-------------------------|----------------|------------------------------|------------------| | | (mW) | (ms) | (ms) | | Screen off (base) | 11.4±0.4 | N/A | N/A | | Screen 100% on | 847.2±2.7 | N/A | N/A | | LTE promotion | 1210.7±85.6 | T_{pro} : 260.1 \pm 15.8 | N/A | | LTE Short DRX On | 1680.2±15.7 | T_{on} : | T_{ps} : | | in RRC_CONNECTED | | 1.0 ± 0.1 | 20.0 ± 0.1 | | LTE Long DRX On | 1680.1±14.3 | T_{on} : | T_{pl} : | | in RRC_CONNECTED | 1060.1±14.5 | 1.0 ± 0.1 | 40.1 ± 0.1 | | LTE Off Duration | 1060.0 ± 3.3 | T_{tail} : | N/A | | in RRC_CONNECTED | 1000.0±3.3 | 11576.0 ± 26.1 | IN/A | | LTE DRX On | 594.3±8.7 | T_{oni} : | T_{pi} : | | in RRC_IDLE | | 43.2±1.5 | 1280.2 ± 7.1 | | | Power* | Duration | Periodicity | |-------------------------|-----------------|------------------------------|------------------| | | (mW) | (ms) | (ms) | | Screen off (base) | 11.4±0.4 | N/A | N/A | | Screen 100% on | 847.2±2.7 | N/A | N/A | | LTE promotion | 1210.7±85.6 | T_{pro} : 260.1 \pm 15.8 | N/A | | LTE Short DRX On | 1680.2±15.7 | T_{on} : | T_{ps} : | | in RRC_CONNECTED | | 1.0 ± 0.1 | 20.0 ± 0.1 | | LTE Long DRX On | 1680.1±14.3 | T_{on} : | T_{pl} : | | in RRC_CONNECTED | 1060.1±14.5 | 1.0 ± 0.1 | 40.1 ± 0.1 | | LTE Off Duration | 1060 0±2 2 | T_{tail} : | N/A | | in RRC_CONNECTED | 1060.0 ± 3.3 | 11576.0 ± 26.1 | 1 N/ A | | LTE DRX On | 504 2 1 2 7 | T_{oni} : | T_{pi} : | | in RRC_IDLE | 594.3 ± 8.7 | 43.2±1.5 | 1280.2 ± 7.1 | | | | | _ | - | - | |--------------------|--|---|--------------|-----------------------|------------------| | | | | Dower* | Duration | Periodicity | | | | | | | (ms) | | Scree | • | P(on) - | -P(off) = 62 | <mark>0m₩, DRX</mark> | J/A | | Scre | | saves | 36% energy | in | J/A | | LTE | | | ONNECTED | | J/A | | LTE S | • | High power levels in both On and p_s : | | | | | in RRC | \sim | | | | | | LTE L | Off durations in the DRX cycle of $\frac{120.1}{[pl]}$ | | | | | | in RRC | | RRC CONNECTED ±0.1 | | | | | LTE C | | | | | | | in RRC_Co | | | | | | | LTE DRX On | | 5042 97 | T_{oni} : | T_{pi} : | | | in RRC_IDLE | | | 594.3±8.7 | 43.2±1.5 | 1280.2 ± 7.1 | # LTE consumes more instant power than 3G/WiFi in the high-power tail - Average power for WiFi tail - 120 mW - Average power for 3G tail - 800 mW - Average power for LTE tail - **1080** mW ### Power model for data transfer - A linear model is used to quantify instant power level: - Downlink throughput t_d Mbps - Uplink throughput t_{ii} Mbps $$P = \alpha_u t_u + \alpha_d t_d + \beta$$ Data transfer power model < 6% error rate in evaluations with real applications ## Energy per bit comparison LTE's high throughput compensates for the promotion energy and tail energy | Transfer
Size | | WiFi
μJ/bit | 3G
μJ/bit | |------------------|-----|----------------|--------------| | 10KB | 170 | 6 | 100 | | 10MB | 0.3 | 0.1 | 4 | Total energy per bit for downlink bulk data transfer ## Energy per bit comparison LTE's high throughput compensates for the promotion energy and tail energy Small data transfer, LTE wastes energy Large data transfer, LTE is energy efficient **10MB** 0.3 0.1 4 Total energy per bit for downlink bulk data transfer LTE state machine LTE power model Network performance **Energy efficiency** Parameter configuration Mobile application ## Network characteristics - 4GTest on Android - http://mobiperf.com/4g.html - Measures network performance with the help of 46 M-Lab nodes across the world - 3,300 users and 14,000 runs in 2 months 10/15/2011 ~ 12/15/2011 4GTest user coverage in the U.S. ## Downlink throughput - LTE median is 13Mbps, up to 30Mbps - The LTE network is relatively unloaded - WiFi, WiMAX < 5Mbps median ## Uplink throughput - LTE median is 5.6Mbps, up to 20Mbps - WiFi, WiMAX < 2Mbps median ### RTT - LTE median 70ms - WiFi similar to LTE #### LTE state machine ### LTE power model Network performance Energy efficiency Parameter configuration Mobile application ## User trace based analysis - UMICH data set - Collected from 20 volunteer smartphone users for five months, totaling 118GB - Contains packet traces including full payload - Trace-driven modeling methodology - Network model simulator - Simulates network states, such as RRC state transitions - Power model simulator - Calculates power usage based on the network states # Comparing total energy of all user traces via simulation in LTE/3G/WiFi Total energy usage ## Energy consumption break down Tail energy dominates LTE energy consumption, similar to 3G The total energy for different networks and users is normalized to be 100% ## Energy consumption break down Tail energy dominates LTE energy consumption, similar to 3G The total energy for different networks and users is normalized to be 100% #### LTE state machine ### LTE power model Network performance **Energy efficiency** Parameter configuration Mobile application ## Impact of configuring LTE tail timer (T_{tail}) - S is defined to be the number of promotions - T_{tail} has significant impact on radio energy E, channel scheduling delay D, and signaling overhead S T_D is the default setting for T_{tail} in the measured network #### LTE state machine ### LTE power model Network performance **Energy efficiency** Parameter configuration Mobile application ## App case study - Studied 5 web-based apps - LTE has comparable page loading time as WiFi, with 3G lagging behind - CPU usage for LTE/WiFi is between 80% ~ 90% during page loading - Network does not appear to be the bottleneck - Total energy consumption: LTE > 3G >> WiFi ### App case study # Summary - LTE has significantly higher speed, compared to 3G and WiFi - LTE is much less power efficient than WiFi due to its tail energy for small data transfers - Derived a power model of a commercial LTE network, with less than 6% error rate - UE processing is the bottleneck for web-based applications in LTE networks - Mobile app design should be LTE friendly ### MobiSys2012 # Thank you! Q & A Contact: Junxian Huang (hjx@umich.edu) # Backup slides # Power trace of DRX in RRC_CONNECTED # Impact of DRX inactivity timer (T_i): Continuous reception to short DRX - Differently, S is defined as the sum of the continuous reception time and DRX on durations in RRC_CONNECTED - T_i has negligible impact on E, however, S is significantly affected ## Interesting questions about LTE - To users: what is the end performance? - Network performance, such as RTT and throughput, how it compares with WiFi, 3G and WiMAX, etc. - Energy efficiency affecting battery life, is LTE more power efficient than 3G or WiFi? - To ISPs: what is the impact of configuring LTErelated parameters on UE power saving, and delay/signaling overhead? - To OS/application developers: what is the performance bottleneck of applications in LTE network, CPU or network speed? # Energy per bit comparison For large data transfer with maximum rate, LTE's energy efficiency is comparable with WiFi, due to LTE's high downlink throughput # One way delay and impact of packet size (not quite related) - LTE uplink one way delay (OWD) is larger than that of downlink - RTT in LTE is more sensitive to packet size than WiFi, mainly due to uplink OWD # JavaScript execution speed: a representative view of smartphone processing capability From 2009 to 2011, smartphones have significantly improved JavaScript execution speed #### Power model for data transfer - A linear model is used to quantify instant power level: - Uplink/downlink throughput t_{μ}/t_{d} (Mbps) $$P = \alpha_u t_u + \alpha_d t_d + \beta$$ | | α_u (mW/Mbps) | α_d (mW/Mbps) | β (mW) | α_u/α_d | |------|----------------------|----------------------|--------------|---------------------| | LTE | 438.39 | 51.97 | 1288.04 | 8.44 | | 3G | 868.98 | 122.12 | 817.88 | 7.12 | | WiFi | 283.17 | 137.01 | 132.86 | 2.07 | #### Data transfer power model < 6% error rate for predicting energy usage of 5 real applications