

MobiSys2012

A Close Examination of Performance and Power Characteristics of 4G LTE Networks

Junxian Huang¹ Feng Qian¹ Alexandre Gerber² Z. Morley Mao¹ Subhabrata Sen² Oliver Spatscheck²

¹University of Michigan ²AT&T Labs - Research

LTE is new, requires exploration

- 4G LTE (Long Term Evolution) is future trend
 - Initiated by 3GPP in 2004
 - 100Mbps DL, 50Mbps UL, <5ms latency
 - Entered commercial markets in 2009

- Lessons from 3G UMTS networks
 - Radio Resource Control (RRC) state machine is important
 - App traffic patterns trigger state transitions, different states determine UE power usage and user experience
 - State transitions incur energy, delay, signaling overhead

LTE state machine

LTE power model

Network performance

Energy efficiency

Parameter configuration

Mobile application

RRC_CONNECTED

RRC_CONNECTED

- Radio resource allocated
- Power state is a function of data rate:
 - 1060mW is the base power consumption
 - Up to 3300mW transmitting at full speed

Tradeoffs of *Ttail* settings

Ttail setting	Energy Consumption	# of state transitions	Responsiveness
Long	High	Small	Fast
Short	Low	Large	Slow

RRC_CONNECTED

Timer expiration

RRC_IDLE

Discontinuous Reception (DRX): micro-sleeps for energy saving

- In LTE 4G, DRX makes UE micro-sleep periodically in the RRC_CONNECTED state
 - Short DRX
 - Long DRX
- DRX incurs tradeoffs between energy usage and latency
 - Short DRX sleep less and respond faster
 - Long DRX sleep more and respond slower
- In contrast, in UMTS 3G, UE is always listening to the downlink control channel in the data transmission states

DRX in LTE

- A DRX cycle consists of
 - On Duration' UE monitors the downlink control channel (PDCCH)
 - 'Off Duration' skip reception of downlink channel
- T_i: Continuous reception inactivity timer
 - When to start Short DRX
- T_{is}: Short DRX inactivity timer
 - When to start Long DRX

LTE state machine

LTE power model

Network performance

Energy efficiency

Parameter configuration

Mobile application

Power trace of RRC state transitions

The data points are sampled and DRX in RRC_CONNECTED tail is not obvious due to the low sampling rate

	Power*	Duration	Periodicity
	(mW)	(ms)	(ms)
Screen off (base)	11.4±0.4	N/A	N/A
Screen 100% on	847.2±2.7	N/A	N/A
LTE promotion	1210.7±85.6	T_{pro} : 260.1 \pm 15.8	N/A
LTE Short DRX On	1680.2±15.7	T_{on} :	T_{ps} :
in RRC_CONNECTED		1.0 ± 0.1	20.0 ± 0.1
LTE Long DRX On	1680.1±14.3	T_{on} :	T_{pl} :
in RRC_CONNECTED		1.0 ± 0.1	40.1 ± 0.1
LTE Off Duration	1060.0 ± 3.3	T_{tail} :	N/A
in RRC_CONNECTED	1000.0±3.3	11576.0 ± 26.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LTE DRX On	594.3±8.7	T_{oni} :	T_{pi} :
in RRC_IDLE		43.2±1.5	1280.2 ± 7.1

	Power*	Duration	Periodicity
	(mW)	(ms)	(ms)
Screen off (base)	11.4+0.4	N/A	N/A
Screen 100% on	847.2±2.7	N/A	N/A
LTE promotion	1210.7±85.6	T_{pro} : 260.1 \pm 15.8	N/A
LTE Short DRX On	1680.2±15.7	T_{on} :	T_{ps} :
in RRC_CONNECTED		1.0 ± 0.1	20.0 ± 0.1
LTE Long DRX On	1680.1 ± 14.3	T_{on} :	T_{pl} :
in RRC_CONNECTED	1000.1±14.5	1.0 ± 0.1	40.1 ± 0.1
LTE Off Duration	1060.0 ± 3.3	T_{tail} :	NI/A
in RRC_CONNECTED	1000.0±3.3	11576.0 ± 26.1	N/A
LTE DRX On	504 2 1 2 7	T_{oni} :	T_{pi} :
in RRC_IDLE	594.3 ± 8.7	43.2±1.5	1280.2 ± 7.1

	Power*	Duration	Periodicity
	(mW)	(ms)	(ms)
Screen off (base)	11.4±0.4	N/A	N/A
Screen 100% on	847.2±2.7	N/A	N/A
LTE promotion	1210.7±85.6	T_{pro} : 260.1 \pm 15.8	N/A
LTE Short DRX On	1680.2±15.7	T_{on} :	T_{ps} :
in RRC_CONNECTED		1.0 ± 0.1	20.0 ± 0.1
LTE Long DRX On	1680.1±14.3	T_{on} :	T_{pl} :
in RRC_CONNECTED	1060.1±14.5	1.0 ± 0.1	40.1 ± 0.1
LTE Off Duration	1060.0 ± 3.3	T_{tail} :	N/A
in RRC_CONNECTED	1000.0±3.3	11576.0 ± 26.1	IN/A
LTE DRX On	594.3±8.7	T_{oni} :	T_{pi} :
in RRC_IDLE		43.2±1.5	1280.2 ± 7.1

	Power*	Duration	Periodicity
	(mW)	(ms)	(ms)
Screen off (base)	11.4±0.4	N/A	N/A
Screen 100% on	847.2±2.7	N/A	N/A
LTE promotion	1210.7±85.6	T_{pro} : 260.1 \pm 15.8	N/A
LTE Short DRX On	1680.2±15.7	T_{on} :	T_{ps} :
in RRC_CONNECTED		1.0 ± 0.1	20.0 ± 0.1
LTE Long DRX On	1680.1±14.3	T_{on} :	T_{pl} :
in RRC_CONNECTED	1060.1±14.5	1.0 ± 0.1	40.1 ± 0.1
LTE Off Duration	1060 0±2 2	T_{tail} :	N/A
in RRC_CONNECTED	1060.0 ± 3.3	11576.0 ± 26.1	1 N/ A
LTE DRX On	504 2 1 2 7	T_{oni} :	T_{pi} :
in RRC_IDLE	594.3 ± 8.7	43.2±1.5	1280.2 ± 7.1

			_	-	-
			Dower*	Duration	Periodicity
					(ms)
Scree	•	P(on) -	-P(off) = 62	<mark>0m₩, DRX</mark>	J/A
Scre		saves	36% energy	in	J/A
LTE			ONNECTED		J/A
LTE S	•	High power levels in both On and p_s :			
in RRC	\sim				
LTE L	Off durations in the DRX cycle of $\frac{120.1}{[pl]}$				
in RRC		RRC CONNECTED ±0.1			
LTE C					
in RRC_Co					
LTE DRX On		5042 97	T_{oni} :	T_{pi} :	
in RRC_IDLE			594.3±8.7	43.2±1.5	1280.2 ± 7.1

LTE consumes more instant power than 3G/WiFi in the high-power tail

- Average power for WiFi tail
 - 120 mW
- Average power for 3G tail
 - 800 mW
- Average power for LTE tail
 - **1080** mW

Power model for data transfer

- A linear model is used to quantify instant power level:
 - Downlink throughput t_d Mbps
 - Uplink throughput t_{ii} Mbps

$$P = \alpha_u t_u + \alpha_d t_d + \beta$$

Data transfer power model

< 6% error rate in evaluations with real applications

Energy per bit comparison

 LTE's high throughput compensates for the promotion energy and tail energy

Transfer Size		WiFi μJ/bit	3G μJ/bit
10KB	170	6	100
10MB	0.3	0.1	4

Total energy per bit for downlink bulk data transfer

Energy per bit comparison

 LTE's high throughput compensates for the promotion energy and tail energy

Small data transfer, LTE wastes energy Large data transfer, LTE is energy efficient

10MB

0.3

0.1

4

Total energy per bit for downlink bulk data transfer

LTE state machine

LTE power model

Network performance

Energy efficiency

Parameter configuration

Mobile application

Network characteristics

- 4GTest on Android
 - http://mobiperf.com/4g.html
 - Measures network performance with the help of
 46 M-Lab nodes across the world
 - 3,300 users and 14,000 runs in 2 months
 10/15/2011 ~ 12/15/2011

4GTest user coverage in the U.S.

Downlink throughput

- LTE median is 13Mbps, up to 30Mbps
 - The LTE network is relatively unloaded
- WiFi, WiMAX < 5Mbps median

Uplink throughput

- LTE median is 5.6Mbps, up to 20Mbps
- WiFi, WiMAX < 2Mbps median

RTT

- LTE median 70ms
- WiFi similar to LTE

LTE state machine

LTE power model

Network performance

Energy efficiency

Parameter configuration

Mobile application

User trace based analysis

- UMICH data set
 - Collected from 20 volunteer smartphone users for five months, totaling 118GB
 - Contains packet traces including full payload
- Trace-driven modeling methodology
 - Network model simulator
 - Simulates network states, such as RRC state transitions
 - Power model simulator
 - Calculates power usage based on the network states

Comparing total energy of all user traces via simulation in LTE/3G/WiFi

Total energy usage

Energy consumption break down

 Tail energy dominates LTE energy consumption, similar to 3G

The total energy for different networks and users is normalized to be 100%

Energy consumption break down

 Tail energy dominates LTE energy consumption, similar to 3G

The total energy for different networks and users is normalized to be 100%

LTE state machine

LTE power model

Network performance

Energy efficiency

Parameter configuration

Mobile application

Impact of configuring LTE tail timer (T_{tail})

- S is defined to be the number of promotions
- T_{tail} has significant impact on radio energy E, channel scheduling delay D, and signaling overhead S

T_D is the default setting for T_{tail} in the measured network

LTE state machine

LTE power model

Network performance

Energy efficiency

Parameter configuration

Mobile application

App case study

- Studied 5 web-based apps
- LTE has comparable page loading time as WiFi, with 3G lagging behind
- CPU usage for LTE/WiFi is between 80% ~ 90% during page loading
 - Network does not appear to be the bottleneck
- Total energy consumption: LTE > 3G >> WiFi

App case study

Summary

- LTE has significantly higher speed, compared to 3G and WiFi
- LTE is much less power efficient than WiFi due to its tail energy for small data transfers
- Derived a power model of a commercial LTE network, with less than 6% error rate
- UE processing is the bottleneck for web-based applications in LTE networks
- Mobile app design should be LTE friendly

MobiSys2012

Thank you!

Q & A

Contact: Junxian Huang (hjx@umich.edu)

Backup slides

Power trace of DRX in RRC_CONNECTED

Impact of DRX inactivity timer (T_i): Continuous reception to short DRX

- Differently, S is defined as the sum of the continuous reception time and DRX on durations in RRC_CONNECTED
- T_i has negligible impact on E, however, S is significantly affected

Interesting questions about LTE

- To users: what is the end performance?
 - Network performance, such as RTT and throughput, how it compares with WiFi, 3G and WiMAX, etc.
 - Energy efficiency affecting battery life, is LTE more power efficient than 3G or WiFi?
- To ISPs: what is the impact of configuring LTErelated parameters on UE power saving, and delay/signaling overhead?
- To OS/application developers: what is the performance bottleneck of applications in LTE network, CPU or network speed?

Energy per bit comparison

 For large data transfer with maximum rate, LTE's energy efficiency is comparable with WiFi, due to LTE's high downlink throughput

One way delay and impact of packet size (not quite related)

- LTE uplink one way delay (OWD) is larger than that of downlink
- RTT in LTE is more sensitive to packet size than WiFi, mainly due to uplink OWD

JavaScript execution speed: a representative view of smartphone processing capability

 From 2009 to 2011, smartphones have significantly improved JavaScript execution speed

Power model for data transfer

- A linear model is used to quantify instant power level:
 - Uplink/downlink throughput t_{μ}/t_{d} (Mbps)

$$P = \alpha_u t_u + \alpha_d t_d + \beta$$

	α_u (mW/Mbps)	α_d (mW/Mbps)	β (mW)	α_u/α_d
LTE	438.39	51.97	1288.04	8.44
3G	868.98	122.12	817.88	7.12
WiFi	283.17	137.01	132.86	2.07

Data transfer power model

< 6% error rate for predicting energy usage of 5 real applications