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Dear editor,
Transcription factors (TFs), also known as trans-acting factors, 
usually recognize the DNA cis-regulatory elements in the pro
moter regions of target genes to activate or repress expression 
(Mitchell and Tjian 1989). Identifying target genes of TFs or the 
TFs binding to target genes is crucial to address the biological 
functions and regulatory networks of these TF–target modules. 
However, the TF–target interaction is time-consuming and la
borious. Here, we constructed RiceTFtarget (https://cbi.njau. 
edu.cn/RiceTFtarget/), a website for robustly predicting TF–tar
get pairs based on coexpression, pattern matching, and ma
chine learning (Fig. 1A). Although some tools can be used for 
predicting cis-regulatory elements (Heinz et al. 2010; Grant 
et al. 2011; Mathelier et al. 2016), RiceTFtarget is a tool for re
trieving specific TF–target interactions in plants.

RiceTFtarget provides a user-friendly and convenient oper
ation interface and includes 6 main functions (Fig. 1B). The 
core function is mainly used to query which target genes 
can be regulated by inputting the gene ID of interested TFs 
or query which TFs can regulate the target gene of interest. 
The result comprises the coexpression correlation coefficient 
(Pearson correlation coefficient [PCC]), binding site informa
tion, and machine learning prediction results of binding sites 
(Fig. 1C), which can be further expanded (Fig. 1D). Also in
cluded is the entry for constructing the regulatory network 
diagram of TFs/targets by top PCCs (Fig. 1D). The other func
tions are detailed in Supplemental Text S1.

Coexpression and cis-regulatory element 
pattern matching
We collected 149 rice (Oryza sativa L.) RNA-seq datasets 
(Supplemental Table S1) without biological replicates from 
the NCBI GEO database (Barrett et al. 2013) to host a robust co
expression relationship for any TF–target pair by Pearson’s cor
relation (ρ) (Supplemental Text S2). Many TF binding 
specificities have been summarized as position weight matrices 
(PWM), also known as TF motifs (Leporcq et al. 2020). 1,862 TF 
genes were obtained from PlantTFDB (Jin et al. 2017), 269 of 
which are manually curated, nonredundancy and high-quality 
TF binding motifs (Supplemental Table S2). High-quality TF mo
tifs were scanned for rice gene promoters (<2 kb) to obtain pu
tative transcription factor binding sites (TFBSs) by the default 
FIMO parameters (Grant et al. 2011). The putative TFBSs for 
each TF were obtained based on the sequence similarity analysis 
among TFs (Fig. 1A and Supplemental Text S3).

Construction of a single-TF model
To build rice TFBS machine learning prediction models and 
verify the accuracy of RiceTFtarget, we downloaded the 53 
ChIP/DAP-seq data of 13 TFs in rice from the NCBI GEO data
base (Supplemental Table S3) and obtained the correspond
ing motifs (Supplemental Fig. S1). Subsequently, element 
scanning on gene promoters identified putative TFBSs of 
each TF by FIMO (Grant et al. 2011). Thirty TFBS features 
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Figure 1. Overview of RiceTFtarget pipeline, structure, functions, and applications. A) RiceTFtarget analysis pipeline. B) RiceTFtarget website struc
ture. C) RiceTFtarget functions. D) Detailed items in RiceTFtarget prediction results, including coexpression, pattern matching, machine learning, 
and regulatory network.
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Figure 2. The performances of the 8 single/across-TF models based on 46 TFBS features and random forest algorithm. The y axis is the AUC value. A) 
The performances of single-TF models. Training sets: The genome location and 46 features of the peaks obtained from the analysis of the corre
sponding TF ChIP-seq data. B) The performances of across-TF models. Training sets: The genome location and 46 features of the peaks obtained 
from all but 1 of the TFs of the ChIP-seq data (7 of 8 TFs). Taking NF-YC12 as an example, the ChIP-seq data of 7 TFs, OsbZIP23, OsbZIP39, OsbZIP46, 
OsMADS29, OsNAC10, OsNAC9, and WOX11, are combined into an integrative dataset to train the ex-NF-YC12 model. The prediction accuracy of 
the model is evaluated by ChIP-seq data of NF-YC12. The prefix “ex-” of the TF label on the x axis means “excluding”.
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were integrated into the prediction model (Supplemental 
Table S4). We further implemented a supervised machine 
learning strategy to construct 8 single-TF prediction models 
(Supplemental Fig. S2). The remaining 5 TFs were filtered 
out due to the lack of training set data (Supplemental 
Table S5). The detailed analysis pipeline is shown in 
Supplemental Text S4.

Different machine learning algorithms exhibit different 
performances on the same training data. We selected 8 ma
chine learning algorithms, including 4 traditional algorithms 
(SVM, logistic regression [LR], decision tree [DR], and 
K-nearest neighbor [KNN]) and 4 ensemble learning classifi
cation algorithms (XGBoost, LightGBM, CatBoost, and ran
dom forest [RF]), to construct TFBS prediction models 
with 8 different TFs based on the 30 features of TFBS. The 
AUC value was utilized to evaluate the performance of the 
model. The results showed that RF, CatBoost, LightGBM, 
and XGBoost performances were similar, with an average 
AUC of 0.873, 0.854, 0.854, and 0.861, respectively 
(Supplemental Table S6). The performance of RF was slightly 
better, with an average AUC of 0.873 (0.806∼0.993) 
(Supplemental Fig. S3 and Table S6). Previous studies have 
shown that RF showed promising performance in TFBS pre
diction (Khamis et al. 2018). The comparison indicates that 
ensemble learning (RF, CatBoost, LightGBM, and XGBoost) 
is better than traditional algorithms (LR, DR, SVM, and 
KNN) in predicting TFBS (Supplemental Fig. S3). The TFBS 
is usually 6 to 20 bp long (Zeng et al. 2020). The dependence 
between sequence bases may be important evidence for de
termining TFBS. To verify this hypothesis, we added the 
k-mer (length-k substrings of a sequence) of TFBS to the 
30 features of the RF model. Considering the performance 
and running speed, we determined the 2-mer on the 
200-bp sequence of TFBS as the k-mer feature of the model 
(Supplemental Fig. S4). Compared with previous reports, the 
performance of most models was improved after adding 
k-mer (Supplemental Fig. S5). We finally applied 46 (30  
+ 42) TFBS features to build 8 single-TFBS prediction models 
based on RF, and the AUC was 0.832∼0.993 (Fig. 2A).

Construction of across-TF model for all TFs
Since a single-TF prediction model is only applicable to the 
specific TF, the territory of application is relatively narrow. 
Therefore, we expect to build a model that can be applied 
to the TFBS prediction of all TFs. We integrated the training 
data with all but 1 of the TFs of the dataset (7 of 8 TFs). The 
TF set aside was then used to evaluate the performance. We 
applied this strategy for each of the selected 8 TFs and com
pared the performance of the across-TF model and single-TF 
model for each TF (Fig. 2B). The prediction performance of all 
across-TF models was relatively lower than that of single-TF 
models, possibly due to the specificity between different TFs. 
Finally, we built an optimal across-TF model with an AUC of 
0.788 that can be effectively applied to predicting the binding 
sites of all rice TFs.

RiceTFtarget performance
We used OsbZIP23 (bZIP transcription factor 23) to verify 
the prediction accuracy of RiceTFtarget. RiceTFtarget pre
dicted 41 targets (coexpression PCC > 0.6 and the machine 
learning prediction label is 1). Among 41 targets, 34 could 
be verified by ChIP-seq data (Supplemental Table S7 and 
Table S8) and the remaining 7 also might be the real targets 
missed by ChIP-seq. Moreover, RiceTFtarget successfully pre
dicted the experimentally validated TF–target pairs, e.g. 
OsbZIP62-Osprx97 (Yang et al. 2019), OsMADS6-OsFDML1 
(Tao et al. 2018), OsBZR1-OsPUB43 (Wu et al. 2022), and 
OsMYB30-Os4CL5 (Li et al. 2020), indicating that the TF–tar
get pairs retrieved by RiceTFtarget are reliable and robust. 
The PCC and machine learning parameters can be flexibly ad
justed to obtain more sensitive or accurate results predicted 
by RiceTFtarget. The ChIP-seq data for a TF or RNA-seq data 
for a TF mutant can also be compared to RiceTFtarget pre
dictions to promote prediction accuracy. Compared to 
PlantRegMap (Tian et al. 2020), RiceTFtarget provides a 
more comprehensive search engine that not only includes 
TF binding motif scanning but also provides coexpression 
correlations of TF–targets and TFBS predicted by machine 
learning to obtain more reliable predictions of TF–target 
pairs. Additionally, RiceTFtarget implements bilateral search, 
which can predict the TFs binding to a gene of interest and 
target genes bound by a TF.

Overall, RiceTFtarget is a robust webserver for identifying 
TF–target pairs, which may substantially accelerate the study 
of the biological roles of TFs and TF regulatory networks in 
rice.
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with the lowest P-value predicted by meme-chip.

Supplemental Figure S2. Pipeline of building a single-TF 
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Supplemental Figure S3. Average performance of 8 differ
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