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Abstract

Motivation: Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial
resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe.
Numerous studies have been conducted on systematically discovering AMPs from natural metagenome. Particularly, in
recent years, with the advances of artificial intelligence technology, several computational models have been developed
to identify potential AMPs. However, given the computational challenges posed by the short lengths of AMPs and the
increasing needs for more accurate predictions, it is important to enhance AMP prediction using more comprehensive
information of peptides with state-of-the-art deep learning algorithms.
Results: In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that
feature vectors used in various existing studies constructed from peptide information, such as sequence, composition,
and structure, can be augmented and even replaced by information inferred by deep learning models. Specifically, we
use a 1900-dimension feature vector inferred by an mLSTM model to demonstrate that such inferred information of
peptides suffice for the task, with the help of our proposed deep neural network model composed of fully connected layers
and transformer encoders for predicting the antibacterial activity of peptides. Evaluation results demonstrate superior
performance of our proposed model on both balanced benchmark datasets and imbalanced test datasets compared with
existing studies. Subsequently, we analyze the relations among peptide sequences, manually extracted features, and
automatically inferred information by deep learning models, leading to observations that the inferred information is more
comprehensive and non-redundant for the task of predicting AMPs. Moreover, this approach alleviates the impact of the
scarcity of positive data and demonstrates great potential in future research and applications.
Availability: UniAMP can be accessed online via https://amp.starhelix.cn, and the source code, data, and models used
in this study are available on https://github.com/quietbamboo/UniAMP.
Contact: jim@njau.edu.cn

Introduction

Currently, antimicrobial resistance (AMR) in bacterial

infections has emerged as a critical global concern, taking

precedence on the agendas of policymakers and public health

authorities in both developed and developing countries(Petrosillo,

2020). For example, Gram-negative bacteria, such as CRE

and members of ESKAPE (K.pneumoniae, A.baumannii,

P. aeruginosa and Enterobacter spp), are of popular

concern(Organization et al., 2019). Specifically, P. aeruginosa’s

extensive number of virulence factors enable remarkable

adaptability, facilitating chronic infections by tailoring its

response to diverse environmental stressors(Jurado-Mart́ın

et al., 2021). Furthermore, Candida species are among

the most common causes of invasive mycotic disease, with

Candida albicans reigning as the leading cause of invasive

candidiasis(Lee et al., 2020). AMR transmission in agriculture

involves not only foodborne pathogens but also commensals

and environmental microbes, posing risks to human health

from animal and plant-based foods(Thanner et al., 2016).

Despite this, the reality is that investments in research and

development of new antibiotics by the pharmaceutical industry

and biotechnology companies are decreasing due to high failure

rates and low profitability(Årdal et al., 2020). As a result,

tackling with AMR has posed a tremendous challenge.
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Developing medicines and pesticides based on antimicrobial

peptides (AMPs) is a very promising solution to this global

challenge. AMPs are low molecular weight proteins with broad-

spectrum antimicrobial properties and immune-modulatory

effects, targeting infectious bacterial, viruses, and fungi(Zhang

et al., 2021). Therefore, AMPs serve as a promising therapeutic

option, ubiquitous in the innate immune systems of various life

forms(Wang et al., 2017). In contrast to typical antibiotics,

most AMPs do not hinder peptidoglycan synthesis through

protein binding, instead, they form complexes with precursor

molecules in the membrane, creating pores, which lead to a

lower likelihood for antimicrobial resistance to develop(Boparai

and Sharma, 2020).

Presently, various databases are developed to offer

information for enhancing the efficient discovery and design

of AMPs. These databases empower users to explore and

extract extensive details regarding peptide structures, chemical

modifications, bioactivities, and classifications(Ramazi et al.,

2022). Most of these AMP databases contain antimicrobial

targets of the AMPs and whether the AMPs is natural or

synthetic. Researchers can consult these databases and obtain

AMP-related information accordingly. However, due to the

time-consuming and labor-intensive nature of high-throughput

experiments for evaluating each individual AMP, the number

of AMPs in each of these databases is not substantial, usually

in the thousands. Additionally, the number of AMPs targeting

a specific pathogen is often in the hundreds, not to mention

that there are a large number of duplicate AMP entries among

different databases(Porto et al., 2017). This leads to obstables

for speeding up the research and application of AMPs, while

in the same time indicating that a huge number of potential

AMPs are yet to be discovered.

With the development of artificial intelligence technologies,

using computational methods to discover and design AMPs has

become a trending research topic. In the last decade, several

tools have been developed with Machine Learning methods:

AntiCP2.0(Agrawal et al., 2021) (Support Vector Machine),

AmpGram(Burdukiewicz et al., 2020) (Random Forest), and

TP-MV(Yan et al., 2022) (ensemble ML method). In recent

years, there are also tools designed based on Deep Learning

methods, a brand new and powerful branch of ML methods,

including Convolutional Neural Networks (CNN) and Long

Short-Term Memory (LSTM): Deep-AmPEP30(Yan et al.,

2020) (CNN), sAMP-PFPDeep(Hussain, 2022) (CNN), and

AMPlify(Li et al., 2022a) (LSTM). Most of these methods

directly make predictions purely based on the amino acid

sequence of a candidate AMP.

Realizing that the information contained in the amino

acid sequence alone might be limited, researchers also

try to rely on some additional features of the peptides,

such as the composition, physicochemical properties and

structural properties, etc. The sAMP-PFPDeep(Hussain,

2022) converts the information of the position, frequency,

and 12 physicochemical properties of the peptide sequences

into three-channel images as model inputs. Similarly, Deep-

AmPEP30 uses the PseAAC(Chou, 2001) feature to predict

AMPs(Yan et al., 2020). In particular, the increasing emphasis

on predicting AMPs using structural properties arises from

the notably accurate predictions of protein structures by

AlphaFold(Jumper et al., 2021) and trRosetta(Du et al., 2021),

for example, sAMPpred-GAT uses the peptide structures

predicted by trRosetta to predict the AMPs based on the

GAT(Yan et al., 2023).

Existing studies have demonstrated the feasibility of

using peptide sequence order, composition, physicochemical

properties and structural properties to predict AMPs, with

considerable performance. However, based on our study, the

aforementioned manually extracted features for describing a

candidate peptide sequence might not be sufficient for best

AMP prediction performance. We evaluated the combination

of several manual feature extraction methods and found that

feature concatenation may even make the feature vector less

comprehensive, possibly due to more information conflict

and redundancy, making model prediction more difficult.

Instead, we believe that using deep learning for feature

extraction might produce a better description of a peptide

sequence for AMP prediction. In this study, we propose

an AMP prediction framework, UniAMP, and evaluated its

performance for predicting AMPs using Unified Representation

(UniRep(Alley et al., 2019)) of peptides which represents a set

of features inferred automatically by a deep learning model.

At the core of UniAMP, we designed a novel deep neural

network as a predictor, composed of fully connected modules

and self-attention mechanisms.

In order for fair and comprehensive comparison, we

aggregate benchmark datasets consisting of all the AMP

entries from CAMPR4, DBAASPv3, dbAMP2, DRAMP3,

LAMP2 and YADAMP, with 7366 AMPs in total. Evaluation

results on the benchmark datasets show that UniAMP clearly

outperforms the existing methods under several comprehensive

metrics, e.g. Matthews Correlation Coefficient(MCC) and F-

score, etc. Moreover, we assessed several state-of-the-art models

on the test datasets, and UniAMP consistently demonstrated

outstanding performance. We analyzed the inferred information

and manually extracted features, concluding that the inferred

information is more comprehensive and effective for AMP

prediction. We believe that UniAMP may greatly boost the

research and discovery of AMPs, and we make UniAMP

publically available (https://amp.starhelix.cn).

Materials and methods

Data collection and Dataset Preparation

AMP and Non-AMP

We collected AMP data from six public AMP databases:

CAMPR4(Gawde et al., 2023), DBAASPv3(Pirtskhalava et al.,

2021), dbAMP2(Jhong et al., 2022), DRAMP3(Shi et al., 2022),

LAMP2(Ye et al., 2020) and YADAMP(Piotto et al., 2012).

These six public AMP databases were merged into a larger

database as our AMPs database, and only the experimentally

valid non-duplicate data were retained. Only the sequences and

antimicrobial activity information of peptides were retained

in this database. The antimicrobial activity information is

a list of Key-Value pairs of Target-Minimum Inhibitory

Concentration(MIC), with all MIC units converted to µg/ml.

Furthermore, the largest MIC was used as the unique value if

the MIC records in different databases are inconsistent. Since

the selection of MIC(Wang et al., 2021) as well as the length of

a peptide sequence(Ma et al., 2022) had proved to be crucial,

peptides with antimicrobial activity against P. aeruginosa and

C. albicans, with a MIC less than 100 µg/ml, and with a length

between 6 and 50 were screened out as two independent positive

datasets. Eventually, the number of positive sequences for P.

aeruginosa and C. albicans were 4821 and 2545 respectively.

On the other hand, we collected a total of 2,835,190 Non-

AMP sequences as a negative dataset from Uniprot(Consortium,

https://amp.starhelix.cn
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2019) by setting ’length:[6 TO 50] NOT antimicrobial NOT

antibiotic NOT antiviral NOT antifungal NOT fungicide NOT

secreted NOT secretory NOT excreted NOT effector NOT

defensin’ as the search condition. After comparison with

the AMPs database, ten sequences which have antimicrobial

activity were removed from the negative dataset. It was worth

noting that all sequences we collected contain only 20 canonical

occurring amino acids.

Positive and Negative datasets

In order for fair comparison and the assessment of the models’

robustness, we used the Cluster Database at High Identity

with Tolerance (CD-HIT)(Fu et al., 2012) program with the

parameters set as ’-c 0.4’ which means the similarity or sharing

of the peptide sequences in different clusters does not exceed

40%(Veltri et al., 2018). Specifically, the positive sequences for

P. aeruginosa and C. albicans were divided into 291 and 230

clusters respectively, and sequences in distinct clusters were

regarded as dissimilar. In each positive dataset, all clusters

were first randomly divided into training and test datasets at

a ratio of 8:2. Because of the unbalanced number of sequences

in each cluster, random division was performed multiple times

until the number of sequences in two sets also maintained

an approximate 8:2 ratio. So far, the positive sequences were

divided into four sets (Table 1).

For the reason that the number of negative sequences

was significantly more the number of positive sequences, only

a small proportion of negative sequences was used. After

splitting the negative dataset into 234,148 clusters using CD-

HIT and randomly dividing these clusters into training and

test datasets, the negative dataset was split into four sets

(Table 1). A rule was that the number of negative sequences

is 50 times that of positive sequences in the training set, and

this ratio increases to 100 times in the test set. The reason

for this is that AMPs are not commonly found in proteins

in general, as they often contain a specific composition of

amino acids, such as a balance of hydrophilic and hydrophobic

amino acids, which facilitates their interaction with bacterial

membranes(Boparai and Sharma, 2020). Besides, the length

distribution was maintained to be similar to that of the positive

sequences when selecting negative sequences (but short negative

sequences are still missing even if they are all selected).

Benchmark datasets

We constructed two benchmark datasets (Table 1) for AMPs

targeting P. aeruginosa and C. albicans respectively to test the

performance compared with previous methods. Specifically, all

positive sequences in test datasets were selected, and the same

number of negative sequences with the same length distribution

were randomly selected. Since there are specific requirements of

some tools, such as sequence length less than 30(Yan et al.,

2020) and more than 40(Yan et al., 2023), corresponding

adjustments were made according to these requirements to

obtain its true performance.

Feature Extraction
In this study, we represented peptides based on their

sequences, composition, physicochemical properties and

inferred information. More specifically, peptides were

represented in three different forms as inputs to models.

Firstly, the amino acid sequences of peptides were directly

used as inputs in prediction. Secondly, the composition and

physicochemical properties of a peptide were represented by

PCA: PseAAC(Chou, 2001), CT(Shen et al., 2007), and

Table 1. All datasets in this study.

Datasets Positives Negatives

P. aeruginosa training dataset 3828 191,400

P. aeruginosa test dataset 993 99,800

C. albicans training dataset 2036 101,800

C. albicans test dataset 509 50,900

P. aeruginosa benchamark dataset 993 993

C. albicans benchmark dataset 509 509

Note: Both positive and negative sequences were filtered by CD-HIT, and

the similarity between training samples and test samples is <40%. The

length distributions of positive and negative sequences in the same dataset

are similar.

AC(Zhang et al., 2019). Thirdly, all peptide features were

extracted by the Unified Representation (UniRep)(Alley et al.,

2019), which computes a 1900-dimensional vector containing

a semantically rich, structural, evolutionary, and biophysically

grounded statistical representation of an amino acid sequence.

Pseudo Amino Acid Composition (PseAAC)

PseAAC is particularly valuable for capturing information

about local and global sequence patterns, which can be crucial

for various tasks such as protein structure prediction, function

prediction, and classification(Chen et al., 2019). The encoding

of PseAAC combines the hydrophobicity, hydrophilicity, and

side-chain mass of amino acids. In this study, we took the

number of sequence correlation factors as 4 and the weight

factor for the sequence order effect as 0.05.

Conjoint Triad (CT)

The CT(Shen et al., 2007) method, akin to the commonly used

K-mer approach for biological sequences, categorizes amino

acids into 7 classes based on their types. Subsequently, with

K set to 3, resulting in a frequency space of 343 (7 × 7 × 7),

amino acid sequences of length N generate N − 2 3-mers.

The frequencies of these 3-mers are computed and assigned to

the frequency space, culminating in a 343-dimensional vector

representing the peptide features.

Auto Covariance descriptor (AC)

The amino acid proximity effect calculated by the AC are

primarily manifested in the interactions between an amino

acid and a fixed number of surrounding amino acids, showing

hydrophobicity (H1), hydrophilicity (H2), net charge index

(NCI), Polarity (P1), polarizability (P2), solvent-accessible

surface area (SASA), and side chains (SC)(Zhang et al., 2019).

Initially, for an amino acid sequence of length N , a 7×N matrix

is constructed based on the aforementioned physicochemical

properties. In this matrix, each element Pi,j represents the ith

property of the jth amino acid. Subsequently, this matrix is

normalized and recalculated according to the formula. Given

the minimum length requirement of 6 for AMP sequences, nmax

was set to 5, resulting in the representation of a peptide as a

35-dimensional (7 × 5) vector.

Inferred information vector

Previously, sAMPpred-GAT(Yan et al., 2023) achieved

excellent results in predicting AMPs using the structural

information inferred from trRosetta(Du et al., 2021). Although

the studie(Wei et al., 2021) demonstrated the structural
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Fig. 1. The framework of the predictor in this study. (a) The workflow of the sequence models. We used the word2vec to encode the peptide sequence into

a 50-dimensional vector. Modifications to the LSTM and ATT models were limited to a single network layer, with the remaining network architecture

kept consistent. BERT was constructed based on the transformer encoder. Besides evaluating three sequence models, we took the intersection of the

three predictions as an additional comparison with the conclusions from the study(Ma et al., 2022). In the figure, the deeper shades of red signify richer

information. (b) The workflow of the UniAMP. We employed UniRep for feature extraction. The mLSTM model for amino acid sequence prediction

incorporates 1900 hidden units encompassing information on protein structure, function, stability, evolution, and so on. In addition to the 1900-

dimensional vector, we incorporated PseAAC, CT, and AC, concatenating them into a 402-dimensional vector for comparison. The prediction model

maps inputs to a fixed length using two enhanced fully connected layers. Subsequently, two transformer encoders facilitates inter-feature information

transfer, generating context-rich feature vector. And prediction labels are eventually output.

similarity of AMPs with the same functions, the structural

information is obviously not comprehensive enough for

predicting AMPs. Therefore, we used the comprehensive

information of peptides inferred by the UniRep(Alley et al.,

2019) in this study.

The UniRep, trained on 24 million UniRef50(Suzek

et al., 2015) amino acid sequences using a 1,900-hidden

unit Multiplicative long-/short-term-memory (mLSTM) RNNs

model capable of fully learning the rich information of

natural language to generate protein sequences(Radford et al.,

2017), exhibits several capabilities (Figure 1). It successfully

learns physicochemically meaningful clusters within amino acid

embeddings and proves effective in partitioning structurally

similar proteins. Additionally, the model showcases its semantic

richness by hierarchically clustering proteins based on expert-

labeled datasets and revealing correlations between internal

hidden states and protein secondary structure. Notably,

UniRep’s single-hidden unit positively correlates with alpha-

helix annotations and negatively correlates with beta-sheet

annotations, suggesting the model’s ability to predict secondary

structure in an unsupervised manner. In summary, The 1900-

dimensional UniRep vector encapsulates not only composition,

physicochemical and structural properties, but also a wealth of

information, encoding structural, evolutionary, and functional

insights.

Based on a trained UniRep model, we converted the peptide

into a 1900-dimensional vector as the input to the model

(Figure 1), and believed that this inferred vector contained

comprehensive information.

Classification Models
In this study, two types of models were used for peptide

classification, distinguished primarily by the variance in their

input vectors. One type used traditional Natural Language

Processing (NLP) models, treating the peptide sequence as

a sentence composed of words representing the 20 canonical

amino acid input into the model(Ma et al., 2022). The other

type incorporated the aforementioned feature vectors as input

into the model.

Sequence vector Model

Previously, the Neural Network Model (NNM) based on

AmpScannerV2(Veltri et al., 2018) combined with the NLP

algorithm had proved effective(Ma et al., 2022). In particular,

this method performs well on datasets containing a substantial

number of negative sequences, with precision several times

than previous approaches. As part of this analysis, three NNM

based on NLP algorithms were used for sequence-based AMPs

prediction.

The first model consisted of several convolutional layers and

an LSTM layer as the backbone network. The second model

replaced the LSTM later in the first model with an ATT layer,

while the third model was BERT model based on transformer

encoders(Vaswani et al., 2017; Devlin et al., 2018) (Figure 1).

Like training the NLP model, we treat the amino acid sequence

as a sentence, with each amino acid symbol representing a

word (the word vector space is of size 20 because giving the

20 canonical amino acids). Subsequently, each amino acid

sequence was encoded into a 50-dimensional vector, where each

dimension corresponds to the index of the amino acid symbol

at that position. For sequences with fewer than 50 amino acids,

zeros were padded to complete the vector (Figure 1).

Feature vector Model

When designing the model, given the relatively comprehensiveness

of the extracted feature information, our focus was on using

fully connected layers to achieve a more effective classification

of feature information. Consequently, drawing inspiration from

the study(Li et al., 2022b), we devised a network architecture

incorporating two transformer encoders. Our objective was

to facilitate the transmission of information between features,

particularly over longer distances, using the self-attention



Short Article Title 5

mechanism of the transformer encoder, which is difficult

to achieve with fully connected layers. Additionally, the

incorporation of batch normalization and dropout layers within

the fully connected module had been undertaken to enhance the

stability of the model during feature mapping, and to mitigate

issues like overfitting, gradient vanishing, and exploding.

The model architecture is shown in Figure 1. The feature

vectors are mapped to a 256-dimensional vector through two

fully connected modules. Subsequently, the reshaped vectors

are input into two transformer encoders, and the predicted

labels are then generated using fully connected layers.

Performance measure

Evaluation metrics

Six metrics were used to evaluate the performance of different

methods in this study:



Accuracy =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score =
(1 + β2) × Precision × Recall

β2 × Precision + Recall

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

AUC : Area Under the ROC Curve

(1)

where TP , FP , TN and FN are the number of true

positives, false positives, true negatives, and false negatives.

MCC provides a balanced assessment of a model’s overall

classification performance, which is especially valuable in

scenarios with imbalanced class distribution(Chicco and

Jurman, 2020).

Model training and test

For existing AMPs predictors, their performance was evaluated

on benchmark datasets using trained models published by

the creators. In the case of the models in this study, we

trained them on training datasets and subsequently assess their

performance on both the benchmark and test datasets.

During training, we set 20% of the training data for

validation. At each iteration epoch of the model, we assessed

its performance on the validation set, with the MCC serving

as the primary evaluation metric. It is important to note that

all models shared identical training conditions, including the

selection of the validation set (same random seed) and the

configuration of hyperparameters (batch size=256, lr=0.0001).

Additionally, a patience value of 30 was established, meaning

that training will be halted if the model does not achieve

a higher MCC within 30 epochs after reaching the current

highest MCC. To enable the model to learn features of positive

samples in an imbalanced dataset, we employed a criterion with

weighted coefficients. This ensures that positive samples receive

a higher weight when calculating the loss. Besides, in training

the models proposed in this paper, each model was trained

five times using the previously mentioned training methods

rigorously, and the model with the median MCC performance

was selected for comparison.

Results

Performance comparison on benchmark datasets
To accurately assess the performance of UniAMP, we

concurrently evaluated multiple predictors on the benchmark

datasets (Table 2), including CAMPR4(Gawde et al.,

2023), AmPEP(Bhadra et al., 2018; Yan et al., 2020),

amPEPpy(Lawrence et al., 2021), AMPfun(Chung et al., 2020),

AmpGram(Burdukiewicz et al., 2020), AMPScannerV2(Veltri

et al., 2018), and sAMPpred-GAT(Yan et al., 2023). It is worth

noting that P. aeruginosa falls under the category of Gram-

negative bacteria, and C. albicans is an infectious fungus.

Although these predictors not only forecast AMPs targeting P.

aeruginosa and C. albicans, all positive samples in benchmark

datasets all belong to the AMP category, whereas negative

samples exhibit no antimicrobial activity and belong to the

non-AMP category. This aligns with the requirements of the

predictors. Furthermore, a portion of the benchmark datasets

is sourced from CAMPR4, with some overlap with data used by

other methods (it is unclear whether this subset was used for

training) As a result, the performance of existing predictors,

especially CAMPR4, may be overestimated.

The performance of each predictor is presented in Table 2a.

UniAMP exhibits the highest accuracy, precision, F1-score,

and MCC on both benchmark datasets, and the highest

recall among the five models trained in this study. When

the feature extraction of UniAMP was replaced with manual

extraction, its comprehensive performance notebly declined,

positioning it only in the mid-range among existing tools.

Furthermore, sAMPpred-GAT uses the structural information

inferred by deep learning models for prediction and achieves

good performance, attaining the highest recall and AUC among

all predictors. The evaluation results show that the information

inferred by deep learning models can improve prediction

performance, and UniAMP is a comprehensive predictor.

Performance comparison on test datasets
The performance is presented in Table 2b. The approach of

intersecting predictive models significantly improved precision,

exhibiting markedly higher precision across both test datasets

compared to alternative methods. However, UniAMP achieved

the highest accuracy (minimal sum of FP and FN), recall, F1-

score, and MCC. Although precision is an important metric

in the AMPs discovery process, during model training, we

filtered models based on MMC as primary evaluation metric.

It is worth noting that LSTM achieved optimal performance

on the validation dataset (only leading by 0.0003), whereas

on the test dataset, UniAMP exhibited superior performance

(leading by 0.0147). Moreover, the MCC of UniAMP surpasses

that of the balanced benchmark datasets when evaluated on

imbalanced testing datasets. The results indicate that UniAMP

exhibits robustness and maintains strong performance even in

imbalanced real-world scenarios.

Feature extraction
In this section, We evaluate various combinations of manual

feature extraction methods, and thier performance on P.

aeruginosa datasets is reported in Table 3. The MCC values

for three manual feature extraction methods greatly exceeded

0, confirming their informativeness. However, the combination

of PseAAC, CT, and AC, which includes more feature, did not

achieve the best performance, instead, PseAAC alone yielded

the best performance. We observed that the combinations using
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Table 2. Performance of UniAMP and some existing AMPs predictors on benchmark datasets and test datasets.

(a) P. aeruginosa benchmark dataset

Method TP FP TN FN Acc Pre Rec F1-score MCC

CAMPR4-RF(Gawde et al., 2023) 970 167 826 23 0.9043 0.8531 0.9768 0.9108 0.8173

CAMPR4-SVM(Gawde et al., 2023) 935 142 851 58 0.8993 0.8682 0.9416 0.9034 0.8015

RF-AmPEP30a(Yan et al., 2020) 851 137 667 43 0.894 0.8613 0.9519 0.9043 0.7911

AMPScannerV2(Veltri et al., 2018) 917 172 821 56 0.8852 0.8449 0.9436 0.8915 0.7757

sAMPpred-GATa(Yan et al., 2023) 48 19 94 0 0.882 0.7164 1.0 0.8348 0.772

amPEPpy(Lawrence et al., 2021) 927 172 821 66 0.8802 0.8435 0.9335 0.8862 0.7647

AmpGrama(Burdukiewicz et al., 2020) 808 202 660 54 0.8515 0.800 0.9374 0.8633 0.7136

CAMPR4-ANN(Gawde et al., 2023) 837 148 845 156 0.8469 0.8497 0.8463 0.8484 0.6939

AMPfun(Chung et al., 2020) 940 366 627 53 0.789 0.7198 0.9466 0.8178 0.6091

AmPEP(Bhadra et al., 2018) 544 418 575 449 0.5634 0.5655 0.5478 0.5565 0.127

LSTM 826 3 990 167 0.9144 0.9964 0.8318 0.9067 0.8403

ATT 826 5 988 167 0.9133 0.994 0.8318 0.9057 0.838

BERT 848 4 989 145 0.925 0.9953 0.854 0.9193 0.8586

UniAMP (with PseAAC, CT, and AC) 771 6 987 222 0.8852 0.9923 0.7764 0.8712 0.7893

UniAMP 848 1 992 145 0.9265 0.9988 0.854 0.9207 0.8621

(b) P. aeruginosa test datasetb

Method TP FP TN FN Pre Rec F1-score MCC

LSTM 826 41 99259 167 0.9527 0.8318 0.8882 0.8892

ATT 826 77 99223 167 0.9147 0.8318 0.8713 0.8711

BERT 848 94 99206 145 0.9002 0.854 0.8765 0.8756

LSTM&ATT&BERT 760 10 99290 233 0.987 0.7654 0.8622 0.8681

UniAMP (with PseAAC, CT and AC) 771 124 99176 222 0.8615 0.7764 0.8168 0.8161

UniAMP 848 61 99239 145 0.9329 0.854 0.8917 0.8915

Note: Existing AMPs Predictors used trained models published by the creators. For a fair comparison, 5 times of each model in this article were trained,

and the model with the median MCC performance was selected for comparison.

aSome predictors exhibited sample deficiencies due to their constraints, and we selected the subset meeting the constraints.

bTest datasets does not employ accuracy as an evaluation metric due to the abundance of negative samples.

PseAAC achieved similar MCC values on the validation dataset

(maximum difference of 0.008), however, a notable discrepancy

emerged on the test set (maximum difference of 0.043). The

poorest performance observed in the combination of PseAAC

and CT, particularly considering the higher dimensionality of

CT compared to the other two features, led us to hypothesize

that one contributing factor is the presence of additional

redundant information causing the model to overfit(Liu and

Gillies, 2016). While the model still demonstrates capability

in handling higher-dimensional inputs (evidenced by similar

performance on the validation dataset), in practice, it exhibits

signs of overfitting. Another contributing factor is that AC

and CT fail to contribute additional meaningful information

compared to PseAAC. On the contrary, inferred information

demonstrated consistently high performance on both the

validation and test datasets, attesting to its robustness.

Inferred information
Among the five models used in this study, LSTM exhibits

the closest performance to UniAMP, and the UniRep feature

vectors are derived from the hidden units of mLSTM.

Subsequently, we compared the output of 100 hidden units from

the LSTM model with the 1900-dimensional vector of UniRep.

To our surprise, we observed a significant correlation (Pearson’s

r=0.47 p<6.08×10−7) between the LSTM vector and a 100-

dimensional segment starting from the 146th dimension of the

UniRep vector. As the UniRep vector has been previously

Table 3. Performance of combined manual feature extraction.

Method MCC (validation) MCC (test)

PseAAC 0.8879 0.8315

CT 0.8357 0.7217

AC 0.772 0.6968

PseAAC+CT 0.8864 0.7877

PseAAC+AC 0.8856 0.8197

CT+AC 0.8802 0.7997

PseAAC+CT+AC 0.8936 0.8161

Note: Because the patience value of 30, we report the performance of each

model for the first 30 epochs before the training cessation.

validated to be rich in protein-related information(Alley et al.,

2019), we could believe that LSTM, as a sequence model, has

learned knowledge beyond the sequence through its feature

extraction module.

Discussion

Previously, most predictors were designed for all AMPs,

providing them with a larger dataset for training. However,

when targeting specific pathogens, such as E.coli(Wang et al.,

2021), the available positive data is only one-tenth of the

entire dataset, making model training more challenging. The
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feature vectors utilized by UniAMP were derived from a

protein-generating mLSTM model, indicating that its feature

extraction is independent on the limited availability of positive

data. Given the abundance of protein data, this approach

allows us to extract information related to protein structure and

function. The surprising correlation between the intermediate

output of LSTM and the input features of UniAMP confirms

that the inferred information utilized by UniAMP incorporates

the information extracted by the sequence model. These two

vectors, serving as the outputs of the ’hidden layer’ before

the fully connected layer, are commonly regarded as highly

abstracted fusion features of the input data(Zeiler and Fergus,

2014). Such fusion features often exhibit enhanced adaptability

and generalization capabilities. Experimental results further

indicate that a subset of this information indeed plays a

crucial role in determining peptide functionality. This has

inspired us to consider that inferred information obtained from

models with commonalities, such as protein-related generation,

structure prediction, functional prediction, may make up for

data scarcity.

The sAMPpred-GAT achieves the highest AUC and recall

in the evaluation results. However, sAMPpred-GAT confines

the inferred information to structural aspects, which may

be not comprehensive enough for predicting AMP. This

may be the reason its comprehensive performance is not as

good as UniAMP. This insight emphasizes the significance

of comprehensiveness in feature extraction, whether derived

through manual or deep learning methods. Additionally,

employing the method of taking the intersection of different

models indeed improves precision. Although it incurs a

significant loss in recall (with a precision increase of less than

0.1 and a recall decrease exceeding 0.13), resulting in an overall

performance decline, it maybe highly effective in scenarios

where precision is of paramount importance.

Future research could explore not only similar approaches

for feature extraction to attain higher model performance but

also consider establishing a mapping between manual features

and deep learning features based on prior knowledge. This

is akin to reasoning backward from a favorable outcome to

understand the underlying reasons, thereby aiding in refining

the complete functional mechanisms of AMPs. In summary, we

hope that UniAMP can not only serve as an excellent AMPs

predictor, but also provide a novel AMPs research perspective:

utilizing information inferred by deep learning models.

Conclusion

In this study, we proposed a framework for predicting AMPs

called UniAMP. This approach utilized the output of 1900-

hidden units from an mLSTM model designed for protein

sequence generation as inferred information for peptides. This

information was input into a prediction network composed of

fully connected modules and a transformer encoder to predict

antibacterial activity. Evaluation results demonstrate that the

model achieves the best comprehensive performance on both a

balanced benchmark dataset and an imbalanced test dataset.

We analyze the relationship between peptide sequences,

manually extracted features, and inferred information,

ultimately concluding that the inferred information from

deep learning models is more comprehensive and non-

redundant. This characteristic contributes to UniAMP’s

excellent performance and robustness, and this approach

exhibits potential applications in future research.

Data and Code availability

The source code, data, and models used in this study are

available on https://github.com/quietbamboo/UniAMP. The

complete dataset of non-AMP data can be downloaded from

Uniprot based on the conditions specified in the article. And

providing all relevant links for AMPs:CAMPR4, DBAASPv3,

dbAMP2, DRAMP3, LAMP2, and YADAMP
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